A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES
Mohammed Mesmoudi, Leila De Floriani, Paola Magillo
2010
Abstract
We present a geometric approach to define discrete normal, principal, Gaussian and mean curvatures, that we call Ccurvature. Our approach is based on the notion of concentrated curvature of a polygonal line and a simulation of rotation of the normal plane of the surface at a point. The advantages of our approach is its simplicity and its natural meaning. A comparison with widely-used discrete methods is presented.
References
- Akleman, E. and Chen, J. (2006). Practical polygonal mesh modeling with discrete gaussian-bonnet theorem. In Proceedings of Geometry, Modeling and Processing.
- Alboul, L., Echeverria, G., and Rodrigues, M. A. (2005). Discrete curvatures and gauss maps for polyhedral surfaces. In Workshop on Computational Geometry.
- Aleksandrov, P. (1957). Topologia combinatoria. Torino.
- Borrelli, V., Cazals, F., and Morvan, J.-M. (2003). On the angular defect of triangulations and the pointwise approximation of curvatures. Comput. Aided Geom. Des., 20(6):319-341.
- Do Carno, M. P. (1976). Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc.
- Doss-Bachelet, C., Franc¸oise, J.-P., and Piquet, C. (2000). Géométrie différentielle. Ellipses.
- Gatzke, T. and Grimm, C. (2006). Estimating curvature on triangular meshes. International Journal of Shape Modeling, 12(1):1-29.
- Hahmann, S., Belyaev, A., Busé, L., Elber, G., Mourrain, B., and Roessl, C. (2007). Shape Interrogation. In Shape Analysis and Structuring, Mathematics and Visualization, pages 1-57. Springer.
- Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2003). Discrete differential-geometry operators for triangulated 2-manifolds. In Visualization and Mathematics III, pages 35-57. Springer-Verlag, Heidelberg.
- Surazhsky, T., Magid, E., Soldea, O., Elber, G., and Rivlin, E. (2003). A comparison of gaussian and mean curvatures estimation methods on triangular meshes. In Proceedings of Conference on Robotics and Automation, 2003., pages 739-743.
- Taubin, G. (1995). Estimating the tensor of curvature of a surface from a polyhedral approximation. In ICCV 7895: Proceedings of the Fifth International Conference on Computer Vision, page 902.
- Troyanov, M. (1986). Les surfaces euclidiennes singularits coniques. Enseign. Math. (2), 32:79-94.
- Watanabe, K. and Belyaev, A. G. (2001). Detection of salient curvature features on polygonal surfaces. Comput. Graph. Forum, 20(3):385-392.
- Xu, G. (2006). Convergence analysis of a discretization scheme for gaussian curvature over triangular surfaces. Comput. Aided Geom. Des., 23(2):193-207.
Paper Citation
in Harvard Style
Mesmoudi M., De Floriani L. and Magillo P. (2010). A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010) ISBN 978-989-674-026-9, pages 90-95. DOI: 10.5220/0002825900900095
in Bibtex Style
@conference{grapp10,
author={Mohammed Mesmoudi and Leila De Floriani and Paola Magillo},
title={A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)},
year={2010},
pages={90-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002825900900095},
isbn={978-989-674-026-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2010)
TI - A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES
SN - 978-989-674-026-9
AU - Mesmoudi M.
AU - De Floriani L.
AU - Magillo P.
PY - 2010
SP - 90
EP - 95
DO - 10.5220/0002825900900095