MULTISPECTRAL TEXTURE ANALYSIS USING LOCAL BINARY PATTERN ON TOTALLY ORDERED VECTORIAL SPACES

Vincent Barra

2010

Abstract

Texture is an important feature when considering image segmentation. Since more and more image segmentation problems involve multi- and hyperspectral data, including color images, it becomes necessary to define multispectral texture features. In this article, we propose LMBP, an extension of the classical Local Binary Pattern (LBP) operator to the case of multispectral images. The LMBP operator is based on the definition of total orderings in the image space and on an extension of the standard univariate LBP. It allows the computation of both a multispectral texture structure coefficient and a multispectral contrast parameter for each spatial location, that serve as an input to an unsupervised clustering algorithm. Results are demonstrated in the case of the segmentation of brain tissues from multispectral MR images, and compared to other multispectral texture features.

References

  1. Ahonen, T., Hadid, A., and Pietikäinen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 28(12):2037-2041.
  2. Barnett, V. (1976). The ordering of multivariate data. Journal of the Royal Statistical Society, Series A, 139:318- 355.
  3. Chanussot, J. and Lambert, P. (1998). Total ordering based on space filling curves for multivalued morphology. In ISMM 7898: Proceedings of the fourth international symposium on Mathematical morphology and its applications to image and signal processing, pages 51- 58, Norwell, MA, USA. Kluwer Academic Publishers.
  4. Cocosco, C. A., Kollokian, V., Kwan, R. K. S., Pike, G. B., and Evans, A. C. (1997). Brainweb: Online interface to a 3d mri simulated brain database. NeuroImage, 5.
  5. García, M. A. and Puig, D. (2007). Supervised texture classification by integration of multiple texture methods and evaluation windows. Image Vision Comput., 25(7):1091-1106.
  6. Goutsias, J. K., Heijmans, H. J. A. M., and Sivakumar, K. (1995). Morphological operators for image sequences. Computer Vision and Image Understanding, 62(3):326-346.
  7. Heikkilä, M., Pietikäinen, M., and Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recogn., 42(3):425-436.
  8. Kwan, R., Evans, A., and Pike, G. (1999). Mri simulationbased evaluation of image-processing and classification methods. 18(11):1085-1097.
  9. Lucieer, A., Tsolmongerel, O., and Stein, A. (2005). Multivariate texture-based segmentation of remotely sensed images. International Journal of Remote sensing, 26:2917-2936.
  10. Mäenpää, T. and Pietikäinen, M. (2003). Multi-scale binary patterns for texture analysis. pages 885-892.
  11. Ojala, T., Pietikinen, M., and Menp, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971-987.
  12. Paclik, P., Duin, R. P., Kempen, G. M. P. V., and Kohlus, R. (2002). Supervised segmentation of textures in backscatter images. In In: Proceedings of IEEE International Conference on Pattern Recognition, pages 490-493. John Wiley and Sons.
  13. Sagan, H. (1994). Space Filling Curves. Springer Verlag.
  14. Song, C., Li, P., and Yang, F. (2006). Multivariate texture measured by local binary pattern for multispectral image classification. In In: Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium, pages 2145-2148.
  15. Tuceryan, M. and Jain, A. K. (1998). Texture analysis, volume 15 of Handbook of Pattern Recognition and Computer Vision, Second Edition, pages 207-248. World Scientific, c.h. chen, and l.f. pau edition.
  16. Wang, A. P. and Wang, S. G. (2006). Content-based highresolution remote sensing image retrieval with local binary patterns. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6419 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series.
Download


Paper Citation


in Harvard Style

Barra V. (2010). MULTISPECTRAL TEXTURE ANALYSIS USING LOCAL BINARY PATTERN ON TOTALLY ORDERED VECTORIAL SPACES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 37-43. DOI: 10.5220/0002828700370043


in Bibtex Style

@conference{visapp10,
author={Vincent Barra},
title={MULTISPECTRAL TEXTURE ANALYSIS USING LOCAL BINARY PATTERN ON TOTALLY ORDERED VECTORIAL SPACES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={37-43},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002828700370043},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - MULTISPECTRAL TEXTURE ANALYSIS USING LOCAL BINARY PATTERN ON TOTALLY ORDERED VECTORIAL SPACES
SN - 978-989-674-029-0
AU - Barra V.
PY - 2010
SP - 37
EP - 43
DO - 10.5220/0002828700370043