AUTOMATIC FACIAL FEATURE DETECTION FOR FACIAL EXPRESSION RECOGNITION
Taner Danisman, Marius Bilasco, Nacim Ihaddadene, Chabane Djeraba
2010
Abstract
This paper presents a real-time automatic facial feature point detection method for facial expression recognition. The system is capable of detecting seven facial feature points (eyebrows, pupils, nose, and corners of mouth) in grayscale images extracted from a given video. Extracted feature points then used for facial expression recognition. Neutral, happiness and surprise emotions have been studied on the Bosphorus dataset and tested on FG-NET video dataset using OpenCV. We compared our results with previous studies on this dataset. Our experiments showed that proposed method has the advantage of locating facial feature points automatically and accurately in real-time.
References
- Cerezo, E. and Hupont, I., (2006). Emotional Facial Expression Classification for Multimodal User Interfaces. LNCS, (Vol. 4069, pp. 405-413).
- Cootes, T. F., Edwards, G. J. and Taylor, C. J. (1998). Active appearance models. In H.Burkhardt and B. Neumann, editors, 5th European Conference on Computer Vision, (Vol. 2, 484-498), Springer, Berlin.
- Ekman, P. and Friesen, W. V. (1982). Felt, false, and miserable smiles. Journal of Nonverbal Behavior, 6, 238-252.
- Hammal, Z., Couvreur, L., Caplier, A. and Rombaut, M. (2005). Facial Expressions Recognition Based on the Belief Theory: Comparison with Different Classifiers. In Proceedings of 13th International Conference on Image Analysis and Processing, Italy.
- Izard, C. E. (1991). The psychology of emotions. New York: Plenum Press.
- Kass, M., Witkin, A. and Terzopoulos, D. (1987). Snake: Active Contour Model, International Journal of Computer Vision. (Vol. 1, pp. 321-331).
- Milborrow, S. and Nicolls, F. (2008). Locating facial features with an extended active shape model. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, (Vol. 5305, pp.504-513). Springer, Heidelberg.
- Rowley, H. A., Baluja, S. and Kanade T. (1998). Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, (Vol. 20, p. 23-38), http://vasc.ri.cmu.edu/NNFaceDetector
- Savran, A., Alyüz, N., Dibeklioglu, H., Çeliktutan, O., Gökberk, B., Sankur, B. and Akarun L. (2008). Bosphorus Database for 3D Face Analysis, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008), Roskilde University, Denmark.
- Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of Computer Vision and Pattern Recognition, (Vol. 1, pp. 511-518).
- Wallhoff, F. (2006). FG-NET Facial Expressions and Emotion Database. Technische Universität München. Retrieved from: http://www.mmk.ei.tum.de/waf/ fgnet/feedtum.html.
Paper Citation
in Harvard Style
Danisman T., Bilasco M., Ihaddadene N. and Djeraba C. (2010). AUTOMATIC FACIAL FEATURE DETECTION FOR FACIAL EXPRESSION RECOGNITION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 407-412. DOI: 10.5220/0002838404070412
in Bibtex Style
@conference{visapp10,
author={Taner Danisman and Marius Bilasco and Nacim Ihaddadene and Chabane Djeraba},
title={AUTOMATIC FACIAL FEATURE DETECTION FOR FACIAL EXPRESSION RECOGNITION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={407-412},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002838404070412},
isbn={978-989-674-029-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - AUTOMATIC FACIAL FEATURE DETECTION FOR FACIAL EXPRESSION RECOGNITION
SN - 978-989-674-029-0
AU - Danisman T.
AU - Bilasco M.
AU - Ihaddadene N.
AU - Djeraba C.
PY - 2010
SP - 407
EP - 412
DO - 10.5220/0002838404070412