FAST DUAL MINIMIZATION OF WEIGHTED TV + L1-NORM FOR SALT AND PEPPER NOISE REMOVAL

S. Jehan-Besson, Jonas Koko

2010

Abstract

In this paper, the minimization of a weighted total variation regularization term (denoted TVg) with L1 norm as the data fidelity term is addressed using the Uzawa block relaxation method. Numerical experiments show the availability of our algorithm for salt and pepper noise removal and its robustness against the choice of the penalty parameter. This last property is useful to attain the convergence in a reduced number of iterations leading to efficient numerical schemes. The specific role of the function g in the weighted total variation term is also investigated and we show that an appropriate choice leads to a significant improvement of the final denoising results. Using this function, we propose a whole algorithm for salt and pepper noise removal (UBR-EDGE) that is able to handle high noise levels at a low computational cost.

References

  1. Aujol, J.-F. and Chambolle, A. (2005). Dual norms and image decomposition models. International Journal of Computer Vision, 63(1):85-104.
  2. Aujol, J.-F., Gilboa, G., Chan, T. F., and Osher, S. (2006). Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision, 67(1):111-136.
  3. Bar, L., Sochen, N. A., and Kiryati, N. (2005). Image deblurring in the presence of salt-and-pepper noise. In Kimmel, R., Sochen, N. A., and Weickert, J., editors, Scale-Space, volume 3459 of Lecture Notes in Computer Science, pages 107-118. Springer.
  4. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., and Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 28:151-167.
  5. Cai, J., Chan, R., and Nikolova, M. (2008). Two-phase methods for deblurring images corrupted by impulse plus gaussian noise. Inverse Probl. Imaging, 2:187- 204.
  6. Cai, J., Chan, R., and Nikolova, M. (2009). Fast twophase image deblurring under impulse noise. Journal of Mathematical Imaging and Vision.
  7. Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1-2):89-97.
  8. Chambolle, A. (2005). Total variation minimization and a class of binary MRF models. In Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 136-152.
  9. Chan, R., Ho, C., and M.Nikolova (2005). Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing, 14(15):1479-1485.
  10. Chan, R., Hu, C., and Nikolova, M. (2004). An iterative procedure for removing random-valued impulse noise. IEEE Signal Processing Letters, pages 921-924.
  11. Chan, T., Golub, G., and P.Mulet (1999). A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal of Scientific Computing, 20(6):1964-1977.
  12. Darbon, J. and Sigelle, M. (2006a). Image restoration with discrete constrained total variation part I: Fast and exact optimization. Journal of Mathematical Imaging and Vision, 26(3):261-271.
  13. Darbon, J. and Sigelle, M. (2006b). Image restoration with discrete constrained total variation part II: Levelable functions, convex priors and non convex cases. Journal of Mathematical Imaging and Vision, 26(3):277- 291.
  14. De Haan, G. and Lodder, R. (2002). De-interlacing of video data using motion vectors and edge information. In International Conference on Consumer Electronics, pages 70-71.
  15. Fortin, M. and Glowinski, R. (1983). Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam.
  16. Fu, H., Ng, M. K., Nikolova, M., and Barlow, J. L. (2006). Efficient minimization methods of mixed l2-l1 and l1- l1 norms for image restoration. SIAM J. Scientific Computing, 27(6):1881-1902.
  17. Glowinski, R. and Tallec, P. L. (1989). Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia.
  18. Koko, J. (2008). Uzawa block relaxation domain decomposition method for the two-body contact problem with Tresca friction. Comput. Methods. Appl. Mech. Engrg., 198:420-431.
  19. Koko, J. and Jehan-Besson, S. (2009). An augmented lagrangian method for TVg+L1-norm minimization. Technical Report RR-09-07, Laboratory LIMOS.
  20. Nikolova, M. (2004). A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and Vision, 20(1-2):99-120.
  21. Nikolova, M., Esedoglu, S., and Chan, T. F. (2006). Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal of Applied Mathematics, 66(5):1632-1648.
  22. Rudin, L. and Osher, S. (1994). Total variation based image restoration with free local constraints. In ICIP, volume 1, pages 31-35, Austin, Texas.
  23. Rudin, L., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D., 60:259-268.
Download


Paper Citation


in Harvard Style

Jehan-Besson S. and Koko J. (2010). FAST DUAL MINIMIZATION OF WEIGHTED TV + L1-NORM FOR SALT AND PEPPER NOISE REMOVAL . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-028-3, pages 68-75. DOI: 10.5220/0002843900680075


in Bibtex Style

@conference{visapp10,
author={S. Jehan-Besson and Jonas Koko},
title={FAST DUAL MINIMIZATION OF WEIGHTED TV + L1-NORM FOR SALT AND PEPPER NOISE REMOVAL},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={68-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002843900680075},
isbn={978-989-674-028-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2010)
TI - FAST DUAL MINIMIZATION OF WEIGHTED TV + L1-NORM FOR SALT AND PEPPER NOISE REMOVAL
SN - 978-989-674-028-3
AU - Jehan-Besson S.
AU - Koko J.
PY - 2010
SP - 68
EP - 75
DO - 10.5220/0002843900680075