A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS
André Homeyer, Michael Schwier, Horst K. Hahn
2010
Abstract
Object-based image analysis enables the recognition of complex image structures that are intractable to conventional pixel-based methods. To date, there is no generally accepted approach for the object-based processing of images, thus making it difficult to transfer developments. In this paper, we propose a generic concept for object-based image analysis that is broadly applicable and founded on established methodologies, such as the attributed relational graph, the relational data model and statistical classifiers. We also describe a reference implementation of the concept as part of the MeVisLab image processing platform.
References
- Aksoy, S. (2006). Modeling of remote sensing image content using attributed relational graphs. Lecture Notes in Computer Science, 4109:475-483.
- Breiman, L. (2001). Random forests. Machine Learning, 45(1):5-32.
- Chang, N.-S. and Fu, K.-S. (1979). A relational database system for images. In Pictorial Information Systems, pages 288-321. Springer.
- Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pages 47-57. ACM New York, NY, USA.
- Hay, G. J. and Castilla, G. (2006). Object-based image analysis: strengths, weaknesses, opportunities and threats (swot). In Lang, S., Blaschke, T., and Schöpfer, E., editors, 1st International Conference on Object-based Image Analysis (OBIA 2006).
- Jain, A., Duin, R., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on pattern analysis and machine intelligence, pages 4-37.
- MeVisLab (2010). Medical image processing and visualization. http://www.mevislab.de. Retrieved February 24, 2010.
- Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 971-987.
- Schäpe, A., Urbani, M., Leiderer, R., and Athelogou, M. (2003). Fraktal hierarchische, prozeß-und objektbasierte Bildanalyse. Procs BVM, pages 206-210.
- Shackelford, A. and Davis, C. (2003). A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing, 41(10):2354-2363.
- Vincent, L. and Soille, P. (1991). Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6):583-598.
Paper Citation
in Harvard Style
Homeyer A., Schwier M. and K. Hahn H. (2010). A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 530-533. DOI: 10.5220/0002848105300533
in Bibtex Style
@conference{visapp10,
author={André Homeyer and Michael Schwier and Horst K. Hahn},
title={A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={530-533},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002848105300533},
isbn={978-989-674-029-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - A GENERIC CONCEPT FOR OBJECT-BASED IMAGE ANALYSIS
SN - 978-989-674-029-0
AU - Homeyer A.
AU - Schwier M.
AU - K. Hahn H.
PY - 2010
SP - 530
EP - 533
DO - 10.5220/0002848105300533