HIERARCHICAL OBJECT CLASSIFICATION USING IMAGENET DOMAIN ONTOLOGIES

Haider Ali

2010

Abstract

We present a binary tree based object classification method in this paper. The binary tree builds a group of classes using ImageNet domain ontologies. A binary decision function is introduced in the root node of the decision tree using the positive samples of the first group for training. The decision function continues dividing the groups in sub-sequent groups when approaching the leaf nodes and provides positive and negative samples for multi-class problems. We have tested our method on the PASCAL Visual Object Classes Challenge 2006 (VOC2006) dataset and have achieved comparable accuracy for group classification. The results show that the proposed method is a powerful class binarization technique for hierarchical objects group classification.

References

  1. Cheng, L. Y. J. Y. N. Z. H. (2009). Layered object categorization. In ICPR 2008. 19th International Conference on Pattern Recognition, pages 1-4.
  2. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and FeiFei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.
  3. G., M., D., G., and I., C. (2009). A multi-class svm classifier utilizing binary decision tree. Informatica, 33.
  4. Hu, Q., Yu, D., and Xie, Z. (2007). Selecting samples and features for svm based on neighborhood model. In RSFDGrC 7807: Proceedings of the 11th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pages 508-517, Berlin, Heidelberg. Springer-Verlag.
  5. Janez Brank, Marko Grobelnik, N. M.-F. and Mladenic, D. (2003). Training text classifiers with svm on very few positive examples. Technical Report.
  6. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60:91-110.
  7. Maillot, N., Thonnat, M., and Hudelot, C. (2004). Ontology based object learning and recognition: application to image retrieval. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on, pages 620-625.
  8. Marszalek, M. and Schmid, C. (2007). Semantic hierarchies for visual object recognition. In Conference on Computer Vision & Pattern Recognition.
  9. Mutch, J. and Lowe, D. (2008). Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision, 80(1):45-57.
Download


Paper Citation


in Harvard Style

Ali H. (2010). HIERARCHICAL OBJECT CLASSIFICATION USING IMAGENET DOMAIN ONTOLOGIES . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 534-536. DOI: 10.5220/0002851905340536


in Bibtex Style

@conference{visapp10,
author={Haider Ali},
title={HIERARCHICAL OBJECT CLASSIFICATION USING IMAGENET DOMAIN ONTOLOGIES},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={534-536},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002851905340536},
isbn={978-989-674-029-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - HIERARCHICAL OBJECT CLASSIFICATION USING IMAGENET DOMAIN ONTOLOGIES
SN - 978-989-674-029-0
AU - Ali H.
PY - 2010
SP - 534
EP - 536
DO - 10.5220/0002851905340536