HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION
Michael Ying Yang, Wolfgang Förstner, Martin Drauschke
2010
Abstract
Multi-class image classification has made significant advances in recent years through the combination of local and global features. This paper proposes a novel approach called hierarchical conditional random field (HCRF) that explicitly models region adjacency graph and region hierarchy graph structure of an image. This allows to set up a joint and hierarchical model of local and global discriminative methods that augments conditional random field to a multi-layer model. Region hierarchy graph is based on a multi-scale watershed segmentation.
References
- Barnard, K., Duygulu, P., Freitas, N. D., Forsyth, D., Blei, D., and Jordan, M. (2003). Matching Words and Pictures. In JMLR, volume 3, pages 1107-1135.
- Drauschke, M. (2009). An Irregular Pyramid for Multiscale Analysis of Objects and their Parts. In 7th IAPRTC-15 Workshop on Graph-based Representations in Pattern Recognition, pages 293-303.
- Drauschke, M., Schuster, H.-F., and Förstner, W. (2006). Detectability of Buildings in Aerial Images over Scale Space. In PCV'06, IAPRS 36 (3), pages 7-12.
- Gould, S., Rodgers, J., Cohen, D., Elidan, G., and Koller, D. (2008). Multi-Class Segmentation with Relative Location Prior. IJCV, 80(3):300-316.
- He, X., Zemel, R., and Carreira-Perpin, M. (2004). Multiscale Conditional Random Fields for Image Labeling. In CVPR, pages 695-702.
- Kohli, P., Kumar, M. P., and Torr, P. (2007). P3 & Beyond: Solving Energies with Higher Order Cliques. In CVPR, pages 1-8.
- Kohli, P., Ladicky, L., and Torr, P. (2009). Robust Higher Order Potentials for Enforcing Label Consistency. IJCV, 82(3):302-324.
- Korc?, F. and Förstner, W. (2008). Interpreting Terrestrial Images of Urban Scenes using Discriminative Random Fields. In 21st ISPRS Congress, IAPRS 37 (B3a), pages 291-296.
- Kumar, S. and Hebert, M. (2003). Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification. In ICCV, pages 1150- 1157.
- Ladicky, L., Russell, C., and Kohli, P. (2009). Associative Hierarchical CRFs for Object Class Image Segmentation. In ICCV, pages 1-8.
- Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML, pages 282-289.
- Lazaridis, G. and Petrou, M. (2006). Image Registration using the Walsh Transform. Image Processing, 15(8):2343-2357.
- McCallum, A., Rohanimanesh, K., and Sutton, C. (2003). Dynamic Conditional Random Fields for Jointly Labeling Multiple Sequences. In NIPS Workshop on Syntax, Semantics and Statistic.
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.
- Petrou, M. and Bosdogianni, P. (1999). Image Processing: The Fundamentals. Wiley.
- Plath, N., Toussaint, M., and Nakajima, S. (2009). MultiClass Image Segmentation using Conditional Random Fields and Global Classification. In ICML, pages 817- 824.
- Reynolds, J. and Murphy, K. (2007). Figure-ground segmentation using a hierarchical conditional random field. In 4th Canadian Conference on Computer and Robot Vision, pages 175-182.
- Schnitzspan, P., Fritz, M., Roth, S., and Schiele, B. (2009). Discriminative Structure Learning of Hierarchical Representations for Object Detection. In CVPR, pages 2238-2245.
- Schnitzspan, P., Fritz, M., and Schiele, B. (2008). Hierarchical Support Vector Random Fields: Joint Training to Combine Local and Global Features. In ECCV, pages 527-540.
- Shotton, J., Winnand, J., Rother, C., and Criminisi, A. (2006). Textonboost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation. In ECCV, pages 1-15.
- Sutton, C. and McCallum, A. (2005). Piecewise Training for Undirected Models. In 21th Ann. Conf. on Uncertainty in AI, pages 568-575.
- Toyoda, T. and Hasegawa, O. (2008). Random Field Model for Integration of Local Information and Global Information. PAMI, 30(8):1483-1489.
- Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt, M. W., and Murphy, K. P. (2006). Accelerated Training of Conditional Random Fields with Stochastic Gradient Methods. In ICML, pages 969-976.
- Yang, L., Meer, P., and Foran, D. J. (2007). Multiple Class Segmentation using a Unified Framework over MeanShift Patches. In CVPR, pages 1-8.
Paper Citation
in Harvard Style
Ying Yang M., Förstner W. and Drauschke M. (2010). HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010) ISBN 978-989-674-029-0, pages 464-469. DOI: 10.5220/0002877404640469
in Bibtex Style
@conference{visapp10,
author={Michael Ying Yang and Wolfgang Förstner and Martin Drauschke},
title={HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)},
year={2010},
pages={464-469},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002877404640469},
isbn={978-989-674-029-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2010)
TI - HIERARCHICAL CONDITIONAL RANDOM FIELD FOR MULTI-CLASS IMAGE CLASSIFICATION
SN - 978-989-674-029-0
AU - Ying Yang M.
AU - Förstner W.
AU - Drauschke M.
PY - 2010
SP - 464
EP - 469
DO - 10.5220/0002877404640469