TRAINING A FUZZY SYSTEM IN WIND CLIMATOLOGIES DOWNSCALING

A. Agüera, J. J. G. de la Rosa, J. G. Ramiro, J. C. Palomares

2010

Abstract

The wind climate measured in a point is usually described as the result of a regional wind climate forced by local effects derived from topography, roughness and obstacles in the surrounding area. This paper presents a method that allows to use fuzzy logic to generate the local wind conditions caused by these geographic elements. The fuzzy systems proposed in this work are specifically designed to modify a regional wind frequency rose attending to the terrain slopes in each direction. In order to optimize these fuzzy systems, Genetic Algorithms will act improving an initial population and, eventually, selecting the one which produce the best aproximation to the real measurements.

References

  1. Boehme, Thomas A.Robin Wallace, Hindcasting Hourly Wind Power across Scotland Based on Met Station Data, Wind Energy 2008; 11: 233-244.
  2. Palma, J.M.L.M., F.A. Castro, L.F. Ribeiro, A.H. Rodrigues, A.P. Pinto; Linear and nonlinear models in wind resource assessment and wind turbine micrositing in complex terrain; Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 2308- 2326.
  3. Gutiérrez, J. M., Rafael Cano, Antonio S. Cofiño, Carmen M. Sordo; Redes probabilísticas y neuronales aplicadas a las ciencias atmosféricas, INM, Ministerio de Medio Ambiente, Madrid (2006).
  4. Louka, P., G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, G. Kallos. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering; Journal of Wind Engineering and Industrial Aerodynamics 96 (2008) 2348- 2362.
  5. Cellura, M., G. Cirrincioneb, A. Marvuglia, A. Miraouic; Wind speed spatial estimation for energy planning in Sicily: A neural kriging application; Renewable Energy 33 (2008) 1251-1266.
  6. Matheron, G. , Principles of geostatistics, Econ. Geol. 58 (1963) 1246-1266
  7. Thiebaux, H.J., M.A. Pedder, Spatial Objective Analysis with Applications in Atmospheric Sciences, Academic Press, New York, 1987, 299 pp.
  8. Sen Zekai, Ahmet Duran Sahin, Wind energy evaluation in some parts of Turkey, J. Wind Eng. Ind. Aerodyn., 74-76 (1998) 345-353.
  9. Agüera, A., J. G. Ramiro, J. Melgar, J. J. G. de la Rosa, J.C. Palomares, A. Moreno. “Categorization of minimum error forecasting zones using a geostatistic wind model”; Proceedings Clean Electrical Power 2009 Capri (Italy), IEEE.
  10. Zadeh, Lofti A.; Fuzzy sets, fuzzy logic and fuzzy systems, Advances in fuzzy Systems - Applications and Theory vol..6. World Scientific. 1997.
Download


Paper Citation


in Harvard Style

Agüera A., J. G. de la Rosa J., G. Ramiro J. and C. Palomares J. (2010). TRAINING A FUZZY SYSTEM IN WIND CLIMATOLOGIES DOWNSCALING . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 238-243. DOI: 10.5220/0002899402380243


in Bibtex Style

@conference{iceis10,
author={A. Agüera and J. J. G. de la Rosa and J. G. Ramiro and J. C. Palomares},
title={TRAINING A FUZZY SYSTEM IN WIND CLIMATOLOGIES DOWNSCALING},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={238-243},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002899402380243},
isbn={978-989-8425-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - TRAINING A FUZZY SYSTEM IN WIND CLIMATOLOGIES DOWNSCALING
SN - 978-989-8425-05-8
AU - Agüera A.
AU - J. G. de la Rosa J.
AU - G. Ramiro J.
AU - C. Palomares J.
PY - 2010
SP - 238
EP - 243
DO - 10.5220/0002899402380243