ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER

Francisco-Javier Montecillo-Puente, Manish N. Sreenivasa, Jean-Paul Laumond

2010

Abstract

We present a framework for online imitation of human motion by the humanoid robot HRP-2. We introduce a representation of human motion, the humanoid-Normalized model, and a Center of Mass (CoM) anticipation model to prepare the robot in case the human lifts his/her foot. Our proposed motion representation codifies operational space and geometric information. Whole body robot motion is computed using a task-based prioritized inverse kinematics solver. By setting the human motion model as the target, and giving the maintenance of robot CoM a high priority, we can achieve a large range of motion imitation. We present two scenarios of motion imitation, first where the humanoid mimics a dancing motion of the human, and second where it balances on one foot. Our results show that we can effectively transfer a large range of motion from the human to the humanoid. We also evaluate the tracking errors between the original and imitated motion, and consider the restrictions on the range of transferable human motions using this approach.

References

  1. Berthoz, A. (2000). The brain's sense of movement. Harvard University Press, Cambridge, MA.
  2. Boulic, R., Maupu, D., and Thalmann, D. (2009). On scaling strategies for the full body interaction with virtual mannequins. Journal Interacting with Computers, Special Issue on Enactive Interfaces, 21(1-2):11-25.
  3. Chois, K. J. and Ko, H. S. (December 2000). Online motion retargetting. The Journal of Visualization and Computer Animation, 11(5):223-235.
  4. Dariush, B., Gienger, M., Arumbakkam, A., Goerick, C., Zhu, Y., and Fujimura, K. (2008a). Online and markerless motion retargeting with kinematic constraints. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 191-198.
  5. Dariush, B., Gienger, M., Jian, B., Goerick, C., and Fujimura, K. (2008b). Whole body humanoid control from human motion descriptors. In IEEE International Conference on Robotics and Automation, pages 2677-2684.
  6. Fleury, S., Herrb, M., and Chatila, R. (1997). Genom: A tool for the specification and the implementation of operating modules in a distributed robot architecture. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 842-848.
  7. Kanehiro, F., Lamiraux, F., Kanoun, O., Yoshida, E., and Laumond, J.-P. (2008a). A local collision avoidance method for non-strictly convex polyhedra. Robotics: Science and Systems, IV.
  8. Kanehiro, F., Suleiman, W., Lamiraux, F., Yoshida, E., and Laumond, J.-P. (2008b). Integrating dynamics into motion planning for humanoid robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 660-667.
  9. Kanoun, O. (2009). Task-driven motion control for humanoid robots. PhD thesis, LAAS-CNRS; Université de Toulouse.
  10. Multon, F., Kulpa, R., and Bideau, B. (2008). Mkm: A global framework for animating humans in virtual reality applications. Presence: Teleoper. Virtual Environ., 17(1):17-28.
  11. Nakamura, Y. (1991). Advanced Robotics: Redundancy and Optimization. Addison-Wesley Longman Publishing, Boston.
  12. Nakaoka, S., Nakazawa, A., Kanehiro, F., Kaneko, K., Morisawa, M., and Ikeuchi, K. (2005a). Task model of lower body motion for a biped humanoid robot to imitate human dances. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3157-3162.
  13. Nakaoka, S., Nakazawa, A., Kanehiro, F., Kaneko, K., Morisawa, M., and Ikeuchi, K. (2005b). Task model of lower body motion for a biped humanoid robot to imitate human dances. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3157-3162.
  14. Patla, A., Adkin, A., and Ballard, T. (1999). Online steering: coordination and control of body center of mass, head and body reorientation. Experimental Brain Research, 129(4):629-634.
  15. Ruchanurucks, M., Nakaoka, S., Kudoh, S., and Ikeuchi, K. (2006). Humanoid robot motion generation with sequential physical constraints. In IEEE International Conference on Robotics and Automation,, pages 2649-2654.
  16. Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational Approaches to Motor Learning by Imitation. philosophical transactions: biological sciences, 358(1431):537-547. philosophical transactions: biological sciences (The Royal Society).
  17. Shon, A., Grochow, K., and Rao, R. (2005). Robotic imitation from human motion capture using gaussian processes. In 5th IEEE-RAS International Conference on Humanoid Robots.
  18. Siciliano, B. and Slotine, J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In IEEE Internatioal Conference on Advanced Robotics, pages 1211-1216.
  19. Sreenivasa, M.-N., Soueres, P., Laumond, J.-P., and Berthoz, A. (2009). Steering a humanoid robot by its head. In IEEE/RSJ International Conference on Intelligent Robots and Systems.
  20. Takano, W., Yamane, K., and Nakamura, Y. (2007). Capture database through symbolization, recognition and generation of motion patterns. In IEEE International Conference on Robotics and Automation, pages 3092- 3097.
  21. Ude, A., Atkeson, C., and M., R. (2004). Programming full-body movements for humanoid robots by observation. In Robotics and Autonomous Systems, volume 47, pages 93-108.
  22. Vallis, L. and McFadyen, B. (2005). Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path. Experimental Brain Research, 167(1):119-127.
  23. Vukobratovic, M. and Stepanenko, J. (1972). On the stability of anthropomorphic systems. Mathematical Biosciences, 15:1-37.
  24. Yamane, K. and Hodgins, J. (2009). Simultaneous tracking and balancing of humanoid robots for imitating human motion capture data. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2510-2517.
  25. Yoshida, E., Kanoun, O., Esteves, C., and Laumond, J.- P. (2006). Task-driven support polygon humanoids. In IEEE-RAS International Conference on Humanoid Robots.
Download


Paper Citation


in Harvard Style

Montecillo-Puente F., N. Sreenivasa M. and Laumond J. (2010). ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8425-01-0, pages 22-31. DOI: 10.5220/0002915300220031


in Bibtex Style

@conference{icinco10,
author={Francisco-Javier Montecillo-Puente and Manish N. Sreenivasa and Jean-Paul Laumond},
title={ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2010},
pages={22-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002915300220031},
isbn={978-989-8425-01-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - ON REAL-TIME WHOLE-BODY HUMAN TO HUMANOID MOTION TRANSFER
SN - 978-989-8425-01-0
AU - Montecillo-Puente F.
AU - N. Sreenivasa M.
AU - Laumond J.
PY - 2010
SP - 22
EP - 31
DO - 10.5220/0002915300220031