A MULTI-ESTIMATION SCHEME FOR CONTROLLING THE BEVERTON-HOLT EQUATION IN ECOLOGY

S. Alonso-Quesada, M. De La Sen

2010

Abstract

This paper proposes an adaptive control algorithm to govern the solution of the Beverton-Holt equation under parametrical uncertainties and the potentially presence of additive disturbances. The control strategy is based on a multi-estimation scheme with a supervisor choosing on-line the active estimation model used to parameterize the controller. The tracking of a reference sequence with local modifications of the carrying capacity sequence around its nominal values is achieved with such a control strategy.

References

  1. Barrowman, N.J., Myers, R.A., Hilborn, R., Kehler, D.G., Field, C.A., 2003. The variability among populations of coho salmon in the maximum productive rate and depensation. Ecological Applications 13, pp. 784-793.
  2. Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations. Fish. Invest. 19, p. 1.
  3. De la Sen, M., Alonso-Quesada, S., 2006. Adaptive control of time-invariant systems with discrete delays subject to multiestimation. Discrete Dynamics in Nature and Society 2006, Article ID 41973, 27 pages, doi: 10.1155/DDNS/2006/41973.
  4. De la Sen, M., Alonso-Quesada, S., 2008. A control theory point of view on Beverton-Holt equation in population dynamics and some of its generalizations. Applied Mathematics and Computation 199, pp. 464-481.
  5. De la Sen, M., Alonso-Quesada, S., 2009. Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Nonadaptive and adaptive cases. Applied Mathematics and Computation 215, pp. 464-481.
  6. Elsayed, E. M., Iricanin, B. D., 2009. On a max-type and a min-type difference equation. Applied Mathematics and Computation 215, pp. 608-614.
  7. Feng, G., 1999. Analysis of a new algorithm for continuous-time robust adaptive control. IEEE Transactions on Automatic Control 44, pp. 1764-1768.
  8. Iricanin, B. D., Stevic, S., 2009. Eventually constant solutions of a rational difference equation. Applied Mathematics and Computation 215, pp. 854-856.
  9. Iricanin, B. D., Stevic, S., 2009. On some rational difference equations. Ars Combinatoria 92, pp. 67-72.
  10. Narendra, K. S., Balakrishnan, J., 1997. Adaptive control using multiple models. IEEE Transactions on Automatic Control 42, pp. 171-187.
  11. Stevic, S., 2006. A short proof of the Cushing-Henson conjecture. Discrete Dynamics in Nature and Society 2006, Article ID 37264, 5 pages, doi: 10.1155/DDNS/2006/37264.
  12. Stevic, S., 2010. On a generalized max-type difference equation from automatic control theory. Nonlinear Analysis - Theory, Methods and Applications 72, pp. 1841-1849.
Download


Paper Citation


in Harvard Style

Alonso-Quesada S. and De La Sen M. (2010). A MULTI-ESTIMATION SCHEME FOR CONTROLLING THE BEVERTON-HOLT EQUATION IN ECOLOGY . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-00-3, pages 133-140. DOI: 10.5220/0002927201330140


in Bibtex Style

@conference{icinco10,
author={S. Alonso-Quesada and M. De La Sen},
title={A MULTI-ESTIMATION SCHEME FOR CONTROLLING THE BEVERTON-HOLT EQUATION IN ECOLOGY},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2010},
pages={133-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002927201330140},
isbn={978-989-8425-00-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A MULTI-ESTIMATION SCHEME FOR CONTROLLING THE BEVERTON-HOLT EQUATION IN ECOLOGY
SN - 978-989-8425-00-3
AU - Alonso-Quesada S.
AU - De La Sen M.
PY - 2010
SP - 133
EP - 140
DO - 10.5220/0002927201330140