NONLINEAR INTO STATE AND INPUT DEPENDENT FORM MODEL DECOMPOSITION - Applications to Discrete-time Model Predictive Control with Succesive Time-varying Linearization along Predicted Trajectories

Przemyslaw Orlowski

2010

Abstract

Linearization techniques are well known tools that can transform nonlinear models into linear models. In the paper we employ a successive model linearization along predicted state and input trajectories resulting in linear time-varying model. The nonlinear behaviour is represented in each time sample by recurrent set of linear time-varying models. Solution of the optimal non-linear model predictive control problem is obtained in an iterative way where the most important step is the linearization along predicted trajectory. The main aim of this paper is to analyse how the nonlinear system should be transformed into linear one to ensure possibly fast solution of the model predictive control problem based on the successive linearization method.

References

  1. Blachuta, M. J. 1999. On Fast State-Space Algorithms for Predictive Control. Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 1, 149-160.
  2. Camacho EF., Bordons C. 2004. Model Predictive Control. Springer.
  3. Chen H., Allgower F. 1998. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34(10):1205-1218.
  4. De Nicolao G., Magni L., Scattolini R.. 2000. Stability and robustness of nonlinear receding horizon control. In F. Allgower and A. Zheng, editors, Nonlinear Predictive Control, pp. 3-23. Birkhauser.
  5. Dutka A. S., Ordys A. W., Grimble M. J. 2003. Nonlinear Predictive Control of 2 dof helicopter model, IEEE CDC proceedings.
  6. Dutka, A., Ordys A. 2004. The Optimal Non-linear Generalised Predictive Control by the Time-Varying Approximation, Proc. of 10th IEEE Int. Conf. MMAR. Miedzyzdroje. Poland. pp. 299-304.
  7. Fontes F. A. 2000. A general framework to design stabilizing nonlinear model predictive controllers. Syst. Contr. Lett., 42(2):127-143.
  8. Grimble M. J., Ordys A. W. 2001. Non-linear Predictive Control for Manufacturing and Robotic Applications, Proc. of 7th IEEE Int. Conf. MMAR. Miedzyzdroje.
  9. Huang Y., Lu W.M. 1996. Nonlinear Optimal Control: Alternatives to Hamilton-Jacobi Equation”, Proc. of the 35th IEEE Conference on Decision and Control, pp. 3942-3947.
  10. Kouvaritakis B., Cannon M., Rossiter J. A. 1999. Nonlinear model based predictive control, Int. J. Control, Vol. 72, No. 10, pp. 919-928.
  11. Kowalczuk Z, Suchomski P. 2005. Discrete-Time Predictive Control With Overparameterized DelayPlant Models And An Identified Cancellation Order. Int. J. Appl. Math. Comput. Sci, Vol. 15, No. 1, 5-34.
  12. Lee Y. I., Kouvaritakis B., Cannon M. 2002. Constrained receding horizon predictive control for nonlinear systems, Automatica, Vol. 38, No. 12, pp. 2093-2102.
  13. Magni, L., De Nicolao, G., Scattolini, R. 1999. Some Issues in the Design of Predictive Controllers. Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 1, 9-24.
  14. Mayne D.Q., Rawlings J.B., Rao C.V., Scokaert P.O.M. 2000. Constrained model predictive control: stability and optimality. Automatica, 26(6):789-814.
  15. Morari M. and Lee J. 1999. Model predictive control: Past, present and future. Comput. Chem. Engi., Vol. 23, No. 4/5, pp. 667-682.
  16. Morari M., de Oliveira Kothare S. 2000. Contractive model predictive control for constrained nonlinear systems. IEEE Trans. Aut. Contr., 45(6):1053-1071.
  17. Mracek C. P., Cloutier J. R. 1998. Control Designs for the nonlinear benchmark problem via the State-Dependent Riccati Equation method, International Journal of Robust and Nonlinear Control, 8, pp. 401-433.
  18. Ordys A. W., Grimble M. J. 2001. Predictive control design for systems with the state dependent nonlinearities, SIAM Conference on Control and its Applications, San Diego, California.
  19. Orlowski, P. 2005. Convergence of the optimal non-linear GPC method with iterative state-dependent, linear time-varying approximation, Proc. of Int. Workshop on Assessment and Future Directions of NMPC, Freudenstadt-Lauterbad, Germany, pp. 491-497.
  20. Primbs J., Nevistic V., Doyle J. 1999. Nonlinear optimal control: A control Lyapunov function and receding horizon perspective. Asian Journal of Control, 1(1):14-24.
  21. Qin S. J. and Badgwell T. 2003. A survey of industrial model predictive control technology. Contr. Eng. Pract., Vol. 11, No. 7, pp. 733-764.
  22. Scokaert P.O.M., Mayne D.Q., Rawlings J.B. 1999. Suboptimal model predictive control (feasibility implies stability). IEEE Trans. Automat. Contr., 44(3):648-654.
  23. Tatjewski P. 2007. Advanced Control of Industrial Processes, Structures and Algorithms. London: Springer.
  24. Ulbig A., Olaru S., Dumur D., Boucher P. 2007. Explicit solutions for nonlinear model predictive control : a linear mapping approach, European Control Conference ECC 2007, Kos, Grece.
Download


Paper Citation


in Harvard Style

Orlowski P. (2010). NONLINEAR INTO STATE AND INPUT DEPENDENT FORM MODEL DECOMPOSITION - Applications to Discrete-time Model Predictive Control with Succesive Time-varying Linearization along Predicted Trajectories . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8425-02-7, pages 87-92. DOI: 10.5220/0002928700870092


in Bibtex Style

@conference{icinco10,
author={Przemyslaw Orlowski},
title={NONLINEAR INTO STATE AND INPUT DEPENDENT FORM MODEL DECOMPOSITION - Applications to Discrete-time Model Predictive Control with Succesive Time-varying Linearization along Predicted Trajectories},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2010},
pages={87-92},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002928700870092},
isbn={978-989-8425-02-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - NONLINEAR INTO STATE AND INPUT DEPENDENT FORM MODEL DECOMPOSITION - Applications to Discrete-time Model Predictive Control with Succesive Time-varying Linearization along Predicted Trajectories
SN - 978-989-8425-02-7
AU - Orlowski P.
PY - 2010
SP - 87
EP - 92
DO - 10.5220/0002928700870092