PSYCHONET - A Psycholinguistc Commonsense Ontology

Haytham Mohtasseb, Amr Ahmed

2010

Abstract

Ontologies have been widely accepted as the most advanced knowledge representation model. This paper introduces PsychoNet, a new knowledgebase that forms the link between psycholinguistic taxonomy, existing in LIWC, and its semantic textual representation in the form of commonsense semantic ontology, represented by ConceptNet. The integration of LIWC and ConceptNet and the added functionalities facilitate employing ConceptNet in psycholinguistic studies. Furthermore, it simplifies utilization of the huge network of Concept-Net for a specific multimedia application based on key category(ies) from LIWC, such as visual or biological applications. PsychoNet adds a new layer of complementary psycholinguistic functions to the original semantic network. Moreover, learning, either clustering or classification, is more applicable in the developed ontology. The paper shows a sample application of text classification for mood prediction task. The result confirms the validity of the proposed network as PsychoNet outperforms LIWC in mood prediction.

References

  1. Altadmri, A. and Ahmed, A. (2009). Visualnet: commonsense knowledgebase for video and image indexing and retrieval application. In IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, volume 3.
  2. Chung, C. K. and Pennebaker, J. W. (2007). The psychological function of function words. Social communication: Frontiers of social psychology, pages 343-359.
  3. Cohn, M. A., Mehl, M. R., and Pennebaker, J. W. (2004). Linguistic markers of psychological change surrounding september 11, 2001. Psychological Science, 15(10):687-693.
  4. Espinosa, J. and Lieberman, H. (2005). Eventnet: Inferring temporal relations between commonsense events. MICAI : Advances in Artificial Intelligence, pages 61-69.
  5. Gill, A. (2003). Personality and language: The projection and perception of personality in computer-mediated communication.
  6. Gill, A. J., French, R. M., Gergle, D., and Oberlander, J. (2008). The language of emotion in short blog texts. In Proceedings of the ACM 2008 conference on Computer supported cooperative work, pages 299-302. ACM New York, NY, USA.
  7. Hancock, J. T., Gee, K., Ciaccio, K., and Lin, J. M. H. (2008). I'm sad you're sad: emotional contagion in cmc. In Proceedings of the ACM 2008 conference on Computer supported cooperative work, pages 295- 298. ACM New York, NY, USA.
  8. Hancock, J. T., Landrigan, C., and Silver, C. (2007). Expressing emotion in text-based communication. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 929-932. ACM New York, NY, USA.
  9. Leshed, G. (2006). Understanding how bloggers feel: recognizing affect in blog posts. In Conference on Human Factors in Computing Systems, pages 1019- 1024. ACM New York, NY, USA.
  10. Liu, H. and Singh, P. (2004). Conceptneta practical commonsense reasoning tool-kit. BT Technology Journal, 22(4):211-226.
  11. Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K. (2007). Using linguistic cues for the automatic recognition of personality in conversation and text. Journal of Artificial Intelligence Research, 30:457-500.
  12. Mishne, G. (2005). Experiments with mood classification in blog posts. In Proceedings of ACM SIGIR 2005 Workshop on Stylistic Analysis of Text for Information Access.
  13. Mohtasseb, H. and Ahmed, A. (2009a). Mining online diaries for blogger identification. In The 2009 International Conference of Data Mining and Knowledge Engineering (ICDMKE'09).
  14. Mohtasseb, H. and Ahmed, A. (2009b). More blogging features for author identification. In The 2009 International Conference on Knowledge Discovery (ICKD'09).
  15. Nowson, S. and Oberlander, J. (2006). The identity of bloggers: Openness and gender in personal weblogs. In Proceedings of the AAAI Spring Symposia on Computational Approaches to Analyzing Weblogs.
  16. Noy, N. F. and Hafner, C. D. (1997). The state of the art in ontology design. AI magazine, 18(3):53-74.
  17. Pennebaker, J. W., Francis, M. E., and Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Mahway : Lawrence Erlbaum Associates.
  18. Pennebaker, J. W., Mehl, M. R., and Niederhoffer, K. G. (2003). Psychological aspects of natural language use: Our words, our selves. Annual Review of Psychology, 54(1):547-577.
  19. Singh, P., Barry, B., and Liu, H. (2004). Teaching machines about everyday life. BT Technology Journal, 22(4):227-240.
Download


Paper Citation


in Harvard Style

Mohtasseb H. and Ahmed A. (2010). PSYCHONET - A Psycholinguistc Commonsense Ontology . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010) ISBN 978-989-8425-29-4, pages 159-164. DOI: 10.5220/0003055601590164


in Bibtex Style

@conference{keod10,
author={Haytham Mohtasseb and Amr Ahmed},
title={PSYCHONET - A Psycholinguistc Commonsense Ontology},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010)},
year={2010},
pages={159-164},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003055601590164},
isbn={978-989-8425-29-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010)
TI - PSYCHONET - A Psycholinguistc Commonsense Ontology
SN - 978-989-8425-29-4
AU - Mohtasseb H.
AU - Ahmed A.
PY - 2010
SP - 159
EP - 164
DO - 10.5220/0003055601590164