SYSTEM IDENTIFICATION BASED ON MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR MACHINES (MULTI-KERNEL LS-SVM)

Mounira Tarhouni, Kaouther Laabidi, Moufida Lahmari-Ksouri, Salah Zidi

2010

Abstract

This paper develops a new approach to identify nonlinear systems. A Multi-Kernel Least Squares Support Vector Machine (Multi-Kernel LS-SVM) is proposed. The basic LS-SVM idea is to map linear inseparable input data into a high dimensional linear separable feature space via a nonlinear mapping technique (kernel function) and to carry out linear classification or regression in feature space. The choice of kernel function is an important task which is related to the system nonlinearity degrees. The suggested approach combines several kernels in order to take advantage of their performances. Two examples are given to illustrate the effectiveness of the proposed method.

References

  1. Bemporad, A., A. Garulli, S. P., and Vicino, A. (2005). A bounded-error approach to piecewise affine system identification. In IEEE Transactions on Automatic Control, 50: 1567-1580.
  2. Delmotte, F. (1997). Analyse multimodèle. In Thèse, UST de Lille, France.
  3. Diosan, L., Oltean, M., Rogozan, A., and Pecuchet, J. (2007). Improving svm performance using a linear combination of kernels. In B. Beliczynski et al. (Eds.): ICANNGA 2007, Part II, LNCS 4432, pp. 218-227, 2007. Springer-Verlag Berlin Heidelberg 2007.
  4. ElFerchichi, S., Laabidi, K., Zidi, S., and Maouche, S. (2009). Feature selection using an svm learning machine. In Signals, Circuits and Systems (SCS).
  5. Goethals, I., Pelckmans, K., Suykens, J., and Moor, B. D. (2005). Identfication of mimo hammerstein models using least squares support vector machines. In Science direct, automatica 41 (2005) 1263 -1272.
  6. Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. (2004). Learning the kernel matrix with semidefinite programming. In Journal of Machine Learning Research, 5, 27-72.
  7. Lauer, F. (2008). From support vector machines to hybrid system identification. In thèse doctorat de l'Université Henri Poincaré-Nancy1. spécialité automatique.
  8. Lei, B., Wang, W., and Li, Z. (2008). On line predictive control based on ls svm. In Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China.
  9. Messaoud, A., Ltaief, M., and Abdennour, R. B. (2009). Supervision based on partial predicctors for a multimodel generalised predictive control : exprimental validation on a semi-batch reactor. In J. Modelling Identification and control, vol 6 no 4.
  10. Sonnenburg, S., Rätsch, G., Schfer, C., and Schlkopf, B. (2006). Large scale multiple kernel learning. In Journal of Machine Learning Research 7 (2006) 15311565.
  11. Suykens, J. and J.Vandewalle (1999). Least squares support vector machine classifier. In Neural Processing Letters 9: 293-300,1999. Kluwer Academic Publishers. Printed in the Netherlands.
  12. Tao, S., Chen, D., and Zhao, W. (2009). Fast pruning algorithm for multi-output ls-svm and its application in chemical pattern classification. In Chemometrics and Intelligent Laboratory Systems 96, 63-69.
  13. Tarhouni, M., Laabidi, K., Zidi, S., and Ksouri, M. L. (2010). Surveillance des systemes complexes par les séparateurs à vaste marge. In 8eme Conférence Internationale de MOdélisation et SIMulation - MOSIM'10 - 10 au 12 mai 2010 - Hammamet - Tunisie.
  14. Valyon, J. and Horvath, G. (2005). A robust ls-svm regression. In Proceeding of word academy of science, engeneering and technology, Volume 7, 148-53.
  15. Verdult, V., Ljung, L., and Verhaegen, M. (2002). Identification of composite local linear state-space models using a projected gradient search. In International Journal Control, 75 :1385-1398, 2002.
  16. Zhejing, B., Daoying, P., and Youxian, S. (2004). Multiple kernel learning, conic duality, and the smo algorithm machine with multi-kernel. In Proceedings of the 21 st International Conference on Machine Learning, Banff, Canada.
  17. Zhejing, B., Daoying, P., and Youxian, S. (2007). Nonlinear model predictive control based on support vector machine with multi-kernel. In Chin. J. Chern. Eng., 15(5) 691-697.
  18. Zidi, S., Maouche, S., and Hammadi, S. (2006). Nouvelle approche pour la regulation des réseaux de transport multimodal. 6eme Conférence Francophone de MOdélisation et SIMulation , MOSIM'06 ,du 3 au 5 avril 2006, Rabat, Maroc.
  19. Zouari, T., Laabidi, K., and ksouri, M. (2008). Multimodel approach applied for failures diagnostic. In International Journal of sciences and Techniques of Automatic controle and computer engineeering, IJ-STA, Volume 2, N1, pp. 500-515.
Download


Paper Citation


in Harvard Style

Tarhouni M., Laabidi K., Lahmari-Ksouri M. and Zidi S. (2010). SYSTEM IDENTIFICATION BASED ON MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR MACHINES (MULTI-KERNEL LS-SVM) . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 310-315. DOI: 10.5220/0003077703100315


in Bibtex Style

@conference{icnc10,
author={Mounira Tarhouni and Kaouther Laabidi and Moufida Lahmari-Ksouri and Salah Zidi},
title={SYSTEM IDENTIFICATION BASED ON MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR MACHINES (MULTI-KERNEL LS-SVM)},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={310-315},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003077703100315},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - SYSTEM IDENTIFICATION BASED ON MULTI-KERNEL LEAST SQUARES SUPPORT VECTOR MACHINES (MULTI-KERNEL LS-SVM)
SN - 978-989-8425-32-4
AU - Tarhouni M.
AU - Laabidi K.
AU - Lahmari-Ksouri M.
AU - Zidi S.
PY - 2010
SP - 310
EP - 315
DO - 10.5220/0003077703100315