TWO ALGORITHMS OF THE EXTENDED PSO FAMILY

Juan Luis Fernández-Martínez, Esperanza Garcia-Gonzalo

2010

Abstract

In this paper we present two novel algorithms belonging to the extended family of PSO: the PP-GPSO and the RR-GPSO. These algorithms correspond respectively to progressive and regressive discretizations in acceleration and velocity. PP-GPSO has the same velocity update than GPSO, but the velocities used to update the trajectories are delayed one iteration, thus, PP-GPSO acts as a Jacobi system updating positions and velocities at the same time. RR-GPSO is similar to a GPSO with stochastic constriction factor. Both versions have a very different behavior from GPSO and the other family members introduced in the past: CC-GPSO and CP-GPSO. The numerical comparison of all the family members has shown that RR-GPSO has the greatest convergence rate and its good parameter sets can be calculated analytically since they are along a straight line located in the first order stability region. Conversely PP-GPSO is a more explorative version.

References

  1. Birge, B. (2003). PSOt - a particle swarm optimization toolbox for use with Matlab. In Swarm Intelligence Symposium, 2003. SIS 7803. Proceedings of the 2003 IEEE, pages 182-186.
  2. Carlisle, A. and Dozier, G. (2001). An off-the-shelf PSO. In Proceedings of the Particle Swarm Optimization Workshop, pages 1-6, Indianapolis, Indiana, USA.
  3. Clerc, M. and Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58-73.
  4. Fernández-Martínez, J. L. and García-Gonzalo, E. (2008). The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications, 2008:1-15.
  5. Fernández-Martínez, J. L. and García-Gonzalo, E. (2009).
  6. The PSO family: deduction, stochastic analysis and comparison. Swarm Intelligence, 3(4):245-273.
  7. Fernández-Martínez, J. L. and García-Gonzalo, E. (2010a). Handbook of Swarm Intelligence -Concepts, Principles and Applications, chapter What makes Particle Swarm Optimization a very interesting and powerful algorithm? Adaptation, Learning and Optimization. Springer.
  8. Fernández-Martínez, J. L. and García-Gonzalo, E. (2010b). Stochastic stability analysis of the linear continuous and discretePSO models. Technical report, Department of Mathematics. University of Oviedo. Submitted to IEEE Transactions on Evolutionary Computation.
  9. Fernández-Martínez, J. L., García-Gonzalo, E., and Fernández-Í lvarez, J. (2008). Theoretical analysis of particle swarm trajectories through a mechanical analogy. International Journal of Computational Intelligence Research, 4(2):93-104.
  10. Fernández-Martínez, J. L., García-Gonzalo, E., FernándezÍ lvarez, J. P., Kuzma, H. A., and Menéndez-Pérez, C. O. (2010a). PSO: A powerful algorithm to solve geophysical inverse problems. application to a 1DDC resistivity case. Jounal of Applied Geophysics, 71(1):13-25.
  11. Fernández-Martínez, J. L., García-Gonzalo, E., and Naudet, V. (2010b). Particle Swarm Optimization applied to the solving and appraisal of the streaming potential inverse problem. Geophysics. Accepted for publication.
  12. Fernández-Martínez, J. L., Kuzma, H. A., García-Gonzalo, E., Fernández-Díaz, J. M., Fernández-Í lvarez, J., and Menéndez-Pérez, C. O. (2009). Application of global optimization algorithms to a salt water intrusion problem. Symposium on the Application of Geophysics to Engineering and Environmental Problems, 22(1):252-260.
  13. Fernández-Martínez, J. L., Mukerji, T., and GarcíaGonzalo, E. (2010c). Particle Swarm Optimization in high dimensional spaces. In 7th International Conference on Swarm Intelligence (ANTS 2010), Brussels, Belgium.
  14. García-Gonzalo, E. and Fernández-Martínez, J. L. (2009). The PP-GPSO and RR-GPSO. Technical report, Department of Mathematics. University of Oviedo. Submitted to IEEE Transactions on Evolutionary Computation.
  15. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings IEEE International Conference on Neural Networks (ICNN 7895), volume 4, pages 1942-1948, Perth, WA, Australia.
  16. Trelea, I. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6):317 - 325.
Download


Paper Citation


in Harvard Style

Luis Fernández-Martínez J. and Garcia-Gonzalo E. (2010). TWO ALGORITHMS OF THE EXTENDED PSO FAMILY . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 237-242. DOI: 10.5220/0003085702370242


in Bibtex Style

@conference{icec10,
author={Juan Luis Fernández-Martínez and Esperanza Garcia-Gonzalo},
title={TWO ALGORITHMS OF THE EXTENDED PSO FAMILY},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={237-242},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003085702370242},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - TWO ALGORITHMS OF THE EXTENDED PSO FAMILY
SN - 978-989-8425-31-7
AU - Luis Fernández-Martínez J.
AU - Garcia-Gonzalo E.
PY - 2010
SP - 237
EP - 242
DO - 10.5220/0003085702370242