AN EXTREME LEARNING MACHINE CLASSIFIER FOR PREDICTION OF RELATIVE SOLVENT ACCESSIBILITY IN PROTEINS
Saras Saraswathi, Robert L. Jernigan, Andrzej Kloczkowski
2010
Abstract
A neural network based method called Sparse-Extreme Learning Machine (S-ELM) is used for prediction of Relative Solvent Accessibility (RSA) in proteins. We have shown that multiple-fold gains in speed of processing by S-ELM compared to using SVM for classification, while accuracy efficiencies are comparable to literature. The study indicates that using S-ELM would give a distinct advantage in terms of processing speed and performance for RSA prediction.
References
- Adamczak, R., Porollo, A., & Meller, J. 2005. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins, 59(3) 467-475.
- Altschul, S., Madden, T., Schaffer, A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17) 3389- 3402.
- Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., & Ben-Tal, N., 2004. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20, (8) 1322-1324.
- Bondugula, R. & Xu, D., 2008. Combining Sequence and Structural Profiles for Protein Solvent Accessibility Prediction, In Comput Syst Bioinformatics ConfC, 195-202.
- Carugo, O., 2003. Prediction of polypeptide fragments exposed to the solvent. In Silico Biology, 3(4), 417- 428.
- Chen, H., Zhou, H.-X., Hu, X., & Yoo, I., 2004 Classification Comparison of Prediction of Solvent Accessibility from Protein Sequences, In 2nd AsiaPacific Bioinformatics Conference (APBC), 333-338.
- Cheng, J., Sweredoski, M., & Baldi, P., 2006. DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks. Data Mining and Knowledge Discovery, 13(1) 1-10
- Cortes, C. & Vapnik, V., 1995. Support vector networks. Machine Learning, 20, 1-25.
- David, M. P., Asprer, J. J., Ibana, J. S., Concepcion, G. P., & Padlan, E. A., 2007. A study of the structural correlates of affinity maturation: Antibody affinity as a function of chemical interactions, structural plasticity and stability. Molecular Immunology, 44 (6), 1342- 1351.
- Fan, R. E, Chen, P. H. and Lin, C. J., 2005. Working set selection using second order information for training SVM. Journal of Machine Learning Research, 6, 1889-1918.
- Gianese, G., Bossa, F., & Pascarella, S., 2003. Improvement in prediction of solvent accessibility by probability profiles. Protein Engineering Design and Selection, 16(12) 987-992.
- Huang, G. B., Zhu, Q. Y., & Siew, C. K., 2006. Extreme learning machine: Theory and applications. Neurocomputing, 70, (1-3) 489-501
- Kim, H. & Park, H., 2004. Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor. Proteins - Structure, Function, and Bioinformatics, 54 (3), 557- 562.
- Manesh, N. H., Sadeghi, M., Arab, S., & Movahedi, A. A. M., 2001. Prediction of protein surface accessibility with information theory. Proteins - Structure, Function, and Genetics, 42 (4) 452-459.
- Meshkin, A. & Ghafuri, H., 2010. Prediction of Relative Solvent Accessibility by Support Vector Regression and Best-First Method. EXCLI, 9, 29-38.
- Mucchielli-Giorgi, M. H., Hazout, S., & Tuffery, P., 1999. PredAcc: prediction of solvent accessibility. Bioinformatics, 15 (2) 176-177.
- Nguyen, M. N. & Rajapakse, J. C., 2005. Prediction of protein relative solvent accessibility with a two-stage SVM approach. Proteins, 59, (1) 30-37.
- Ooi, T., Oobatake, M., Namethy, G., & Scheraga, H. A., 1987. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proceedings of the National Academy of Sciences of the United States of America, 84 (10) 3086-3090.
- Petersen, B., Petersen, T. N., & Andersen , P., Nielsen, M., Lundegaard, C., 2009. A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Structural Biology, 9:51.
- Pollastri, G., Baldi, P., Fariselli, P., & Casadio, R., 2002. Prediction of coordination number and relative solvent accessibility in proteins. Proteins, 47(2) 142-153.
- Pollastri, G., Martin, A., Mooney, C., & Vullo, A., 2007. Accurate prediction of protein secondary structure and solvent accessibility by consensus combiners of sequence and structure information. BMC Bioinformatics, 8, (1) 201
- Saraswathi, S., Suresh, S., Sundararajan, N., Zimmerman, M. and Nilsen-Hamilton, M., 2010. ICGA-PSO-ELM approach for Accurate Cancer Classification Resulting in Reduced Gene Sets Involved in Cellular Interface with the Microenvironment. IEEE Transactions in Bioinformatics and Computational Biology, http://www.computer.org/portal/web/csdl/doi/10.1109/ TCBB.2010.13.
- Suresh, S., Saraswathi, S., Sundararajan, N., 2010. Performance Enhancement of Extreme Learning Machine for Multi-category Sparse Data Classification Problems. Engineering Applications of Artificial Intelligence, http://dx.doi.org/10.1016/j.engappai.2010.06.009.
- Shandar, A. & Gromiha, M. M., 2002. NETASA: neural network based prediction of solvent accessibility. Bioinformatics, 18(6), 819-824.
- Shen, B. & Vihinen, M., 2003. RankViaContact: ranking and visualization of amino acid contacts. Bioinformatics, 19(16), 2161-2162.
- Sim, J., Kim, S.-Y., & Lee, J., 2005. Prediction of protein solvent accessibility using fuzzy k -nearest neighbor method. Bioinformatics, 21(12), 2844-2849.
- Singh, Y. H., Gromiha, M. M., Sarai, A., & Ahmad, S., 2006. Atom-wise statistics and prediction of solvent accessibility in proteins. Biophysical Chemistry, 124(2), 145-154.
- Wagner, M., Adamczak, R., Porollo, A., & Meller, J., 2005. Linear regression models for solvent accessibility prediction in proteins. J Comput Biol, 12(3), 355-369.
- Wang, J. Y., Lee, H. M., & Ahmad, S., 2007. SVMCabins: prediction of solvent accessibility using accumulation cutoff set and support vector machine. Proteins, 68(1), 82-91.
- Zarei, R., Arab, S., & Sadeghi, M., 2007. A method for protein accessibility prediction based on residue types and conformational states. Computational Biology and Chemistry, 31(5-6) 384-388.
Paper Citation
in Harvard Style
Saraswathi S., Jernigan R. and Kloczkowski A. (2010). AN EXTREME LEARNING MACHINE CLASSIFIER FOR PREDICTION OF RELATIVE SOLVENT ACCESSIBILITY IN PROTEINS . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 364-369. DOI: 10.5220/0003086803640369
in Bibtex Style
@conference{icnc10,
author={Saras Saraswathi and Robert L. Jernigan and Andrzej Kloczkowski},
title={AN EXTREME LEARNING MACHINE CLASSIFIER FOR PREDICTION OF RELATIVE SOLVENT ACCESSIBILITY IN PROTEINS
},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={364-369},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003086803640369},
isbn={978-989-8425-32-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - AN EXTREME LEARNING MACHINE CLASSIFIER FOR PREDICTION OF RELATIVE SOLVENT ACCESSIBILITY IN PROTEINS
SN - 978-989-8425-32-4
AU - Saraswathi S.
AU - Jernigan R.
AU - Kloczkowski A.
PY - 2010
SP - 364
EP - 369
DO - 10.5220/0003086803640369