THE COMPUTATIONAL REPRESENTATION OF CONCEPTS IN FORMAL ONTOLOGIES - Some General Considerations

Marcello Frixione, Antonio Lieto

2010

Abstract

Within cognitive science, the “concept of concept” results to be highly disputed and problematic. In our opinion, this is due to the fact that the notion itself of concept is in some sense heterogeneous, and encompasses different cognitive phenomena. This results in a strain between conflicting requirements, such as, for example, compositionality on the one side and the need of representing prototypical information on the other. This has several consequences also for the practice of knowledge engineering and for the technology of formal ontologies. In this paper we propose an analysis of this state of affairs. As a possible way out, in the conclusions we suggest a framework for the representation of concepts, which is inspired by the so called dual process theories of reasoning and rationality.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., 2003. The Description Logic Handbook: Theory, Implementations and Applications. Cambridge University Press.
  2. Baader, F., Hollunder, B., 1995. Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149-180.
  3. Barsalou, L. W., 1985. Continuity of the conceptual system across species. Trends in Cognitive Science, 9(7), 305-311.
  4. Bobillo, F., Straccia, U., 2009. An OWL Ontology for Fuzzy OWL 2. Proceedings of the 18th International Symposium on Methodologies for Intelligent Systems (ISMIS-09). Lecture Notes in Computer Science. Springer Verlag.
  5. Bonatti, P.A., Lutz, C., Wolter, F., 2006. Description logics with circumscription. In: Proc. of KR, pp. 400- 410.
  6. Brachman, R., 1985. I lied about the trees. The AI Magazine, 3(6), 80-95.
  7. Brachman, R., Schmolze, J. G., 1985. An overview of the KL-ONE knowledge representation system, Cognitive Science, 9, 171-216.
  8. Brachman, R., Schmolze, J. G. (eds.), 1985. Readings in Knowledge Representation, Los Altos, CA: Morgan Kaufmann.
  9. Brandom, R., 1994. Making it Explicit. Cambridge, MA: Harvard University Press.
  10. Calegari, S., Ciucci, D., 2007. Fuzzy Ontology, Fuzzy Description Logics and Fuzzy-OWL. Proc. WILF 2007, Vol. 4578 of LNCS.
  11. Da Costa P. C. G., Laskey, K. B., 2006. PR-OWL: A framework for probabilistic ontologies. Proc. FOIS2006, 237-249.
  12. Dell'Anna, A., Frixione, M., 2010. On the advantage (if any) and disadvantage of the conceptual/ nonconceptual distinction for cognitive science. Minds & Machines, 20, 29-45.
  13. Ding, Z., Peng, Y., Pan, R.. 2006. BayesOWL: Uncertainty modeling in Semantic Web ontologies. In Z. Ma (ed.), Soft Computing in Ontologies and Semantic Web, vol. 204 of Studies in Fuzziness and Soft Computing, Springer.
  14. Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A., 1998. An epistemic operator for description logics. Artificial Intelligence, 100(1-2), 225-274.
  15. Donini, F. M., Nardi, D., Rosati, R., 2002. Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log., 3(2), 177-225.
  16. Eiter, T., Ianni, G., Luckasiewicz, T., schinklauer, R., Tompits, H. 2008. Combining answer set programming with description logics for the Semantic Web. Artificial Intelligence, 172, 1495-1539.
  17. Evans, J. S. B. T., Frankish, K. (eds.), 2008. In Two Minds: Dual Processes and Beyond. New York, NY: Oxford UP.
  18. Fodor, J., 1981. The present status of the innateness controversy. In J. Fodor, Representations, Cambridge, MA: MIT Press.
  19. Fodor, J., Pylyshyn, Z., 1988. Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3-71.
  20. Frixione, M., 2007. Do concepts exist? A naturalistic point of view. In C. Penco, M. Beaney, M. Vignolo (eds.). Explaining the Mental. Cambridge, UK: Cambridge Scholars Publishing.
  21. Frixione, M., Gaglio, S., Spinelli, G. 1989. Are there individual concepts? Individual concepts and definite descriptions in SI-Nets. International Journal of Man Machine Studies, 30, 489-503.
  22. Gao, M., Liu, C., 2005. Extending OWL by fuzzy Description Logic. Proc. 17th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2005), 562- 567. IEEE Computer Society, Los Alamitos.
  23. Giordano, L., Ghiozzi, V., Olivetti, N., Pozzato, G., 2007. Preferential Description Logics. Logic for Programming, In Artificial Intelligence, and Reasoning, LNCS, Springer Verlag.
  24. Hayes, P., 2001. Dialogue on rdf-logic. Why must the web be monotonic?. World Wide Web Consortium (W3C). Link: http://lists.w3.org/Archives/public/www-rdflogic/2001Jul/0067.html
  25. Katz, Y., Parsia, B., 2005. Towards a non monotonic extension to OWL. Proc. OWL Experiences and Directions, Galway, November 11-12.
  26. Klinov, P., Parsia, B., 2008. Optimization and evaluation of reasoning in probabilistic description logic: Towards a systematic approach. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, 213-228. Springer, Heidelberg.
  27. Lukasiewicz, L., Straccia, U., 2008. Managing uncertainty and vagueness in description logics for the Semantic Web. Journal of Web Semantics, 6, 291-308.
  28. Machery, E., 2005. Concepts are not a natural kind. Philosophy of Science, 72, 444-467.
  29. Machery, E., 2009. Doing without Concepts. Oxford, UK: Oxford University Press.
  30. Minsky, M., 1975. A framework for representing knowledge, in Patrick Winston (a cura di), The Psychology of Computer Vision, New York, McGrawHill. Also in Brachman & Levesque (2005).
  31. Murphy, G. L., 2002. The Big Book of Concepts. Cambridge, MA: The MIT Press.
  32. Osherson, D. N., Smith, E. E., 1981. On the adequacy of prototype theory as a theory of concepts. Cognition, 11, 237-262.
  33. Peacocke, C., 1992. A Study of Concepts. Cambridge, MA: The MIT Press.
  34. Rosch, E., 1975. Cognitive representation of semantic categories. Journal of Experimental Psychology, 104, 573-605.
  35. Spelke, E. S., 1994. Initial knowledge: six suggestions. Cognition, 50, 431-445.
  36. Spelke, E. S., Kinzler, K.D., 2007. Core knowledge. Developmental Science, 10(1), 89-96.
  37. Stanovich, K. E., West, R., 2000. Individual Differences in Reasoning: Implications for the Rationality Debate?. The Behavioural and Brain Sciences 23 (5), 645- 665.
  38. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I., 2005. Fuzzy OWL: Uncertainty and the Semantic Web. Proc. Workshop on OWL: Experience and Directions (OWLED 2005). CEUR Workshop Proceedings, vol. 188.
  39. Straccia, U., 1993. Default inheritance reasoning in hybrid kl-one-style logics, Proc. IJCAI, 676-681.
  40. Wittgenstein, L., 1953. Philosophische Untersuchungen. Oxford, Blackwell.
Download


Paper Citation


in Harvard Style

Frixione M. and Lieto A. (2010). THE COMPUTATIONAL REPRESENTATION OF CONCEPTS IN FORMAL ONTOLOGIES - Some General Considerations . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010) ISBN 978-989-8425-29-4, pages 396-403. DOI: 10.5220/0003095903960403


in Bibtex Style

@conference{keod10,
author={Marcello Frixione and Antonio Lieto},
title={THE COMPUTATIONAL REPRESENTATION OF CONCEPTS IN FORMAL ONTOLOGIES - Some General Considerations},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010)},
year={2010},
pages={396-403},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003095903960403},
isbn={978-989-8425-29-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2010)
TI - THE COMPUTATIONAL REPRESENTATION OF CONCEPTS IN FORMAL ONTOLOGIES - Some General Considerations
SN - 978-989-8425-29-4
AU - Frixione M.
AU - Lieto A.
PY - 2010
SP - 396
EP - 403
DO - 10.5220/0003095903960403