REAL-TIME INTELLIGENT DECISION SUPPORT IN INTENSIVE MEDICINE

Filipe Portela, Manuel Santos, Marta Vilas Boas, Fernando Rua, Álvaro Silva, José Neves

2010

Abstract

Daily, a great amount of data that is gathered in intensive care units, which makes intensive medicine a very attractive field for applying knowledge discovery in databases. Previously unknown knowledge can be extracted from that data in order to create prediction and decision models. The challenge is to perform those tasks in real-time, in order to assist the doctors in the decision making process. The Data Mining models should be continuously assessed and optimized, if necessary, to maintain a certain accuracy. In this paper we present the INTCare system, an intelligent decision support system for intensive medicine and the way it was adapted to the new requirements. Some preliminary results are analysed and discussed.

References

  1. Arnott, D. & G. Pervan. 2004. A critical analysis of decision support systems research. In Conference on Decision Support Systems, 67-87. Prato, ITALY: Palgrave Publishers Ltd.
  2. Fayyad, U. M., G. Piatetsky-Shapiro & P. Smyth (1996) From data mining to knowledge discovery: an overview.
  3. Fonseca, T., C. Ribeiro & C. Granja (2009) Vital Signs in Intensive Care: Automatic Acquisition and Consolidation into Electronic Patient Records. Journal of Medical Systems, 33, 47-57.
  4. Frawley, W. J., G. Piatetsky-Shapiro & C. J. Matheus (1992) Knowledge Discovery in Databases: An Overview. AI Magazine, 13, 57-70.
  5. Gago, P. & M. F. Santos. 2008. Towards an Intelligent Decision Support System for Intensive Care Units. In 18th European Conference on Artificial Intelligence. Greece.
  6. Gago, P., M. F. Santos, Á. Silva, P. Cortez, J. Neves & L. Gomes (2006) INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems.
  7. Gago, P., A. Silva & M. F. Santos. 2007. Adaptive decision support for intensive care. In 13th Portuguese Conference on Artificial Intelligence, ed. J. S. M. F. M. J. M. Neves, 415-425. Guimaraes, PORTUGAL: Springer-Verlag Berlin.
  8. Gardner, R. M., W. L. Hawley, T. D. East, T. A. Oniki & H. F. W. Young (1991) Real time data acquisition: recommendations for the Medical Information Bus (MIB). International journal of clinical monitoring and computing, 8, 251-258.
  9. Hall, J. B., G. A. Schmidt & L. D. H. Wood. 2005. Principles of Critical Care. McGraw-Hill's AccessMedicine.
  10. Hooda, J. S., E. Dogdu & R. Sunderraman. Health Level-7 compliant clinical patient records system. 259-263. ACM.
  11. Jennings, N. R. (2000) On agent-based software engineering. Artificial Intelligence, 117, 277-296.
  12. Lourenco, A. & O. Belo (2003) Promoting agent-based knowledge discovery in medical intensive care units. WSEAS Transactions on Computers, 2, 403-408.
  13. Mahmoud, M. 2003. Real-time data acquisition system for monitoring patients in intensive care unit., 320-326. Multisensor, Multisource Information Fusion: Architectures, Algorithms and Applications.
  14. Michalewicz, Z., M. Schmidt, M. Michalewicz & C. Chiriac. 2007. Adaptive Business Intelligence. Springer.
  15. Morik, K. (2003) Data analysis and knowledge validation in intensive care monitoring.
  16. Morik, K., P. Brockhausen & T. Joachims. Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring. 268-277. Citeseer.
  17. Negash, S. & P. Gray Business intelligence. Handbook on Decision Support Systems 2, 175-193.
  18. Pereira, M., A. Curra, R. Rivas, J. Pereira, G. Banos, J. Teueiro & A. Pazos (2007) Computer aided monitoring system of intensive care unit patients. WSEAS Transactions on Information Science and Applications, 4, 78-84.
  19. Ramon, J., D. Fierens, F. Güiza, G. Meyfroidt, H. Blockeel, M. Bruynooghe & G. Van Den Berghe (2007) Mining data from intensive care patients. Advanced Engineering Informatics, 21, 243-256.
  20. Rao, S. M. & S. T. (2003) Organization of intensive care unit and predicting outcome of critical illness. Indian J. Anaesth, 47 (5), 328-337.
  21. Santos M.F., P. F., Vilas-Boas M., Machado & A. A. J., Neves J., Silva A., Rua F., Salazar M., Quintas C., Cabral A.F.,. 2009. Intelligent Decision Support in Intensive Care Units - Nursing Information Requirements. In WSEAS Transactions on INFORMATICS, ed. Springer.
  22. Santos, M. F., P. Cortez, P. Gago, Á. Silva & F. Rua. 2006. Intelligent decision support in Intensive Care Medicine. In 2nd International Conference on Knowledge Engineering and Decision Support, 401- 405. Lisbon, Portugal.
  23. Santos, M. F., F. Portela, M. Vilas-Boas, J. Machado, A. Abelha, J. Neves, A. Silva & F. Rua. 2009. Information Modeling for Real-Time Decision Support in Intensive Medicine. In Proceedings of the 8th Wseas International Conference on Applied Computer and Applied Computational Science - Applied Computer and Applied Computational Science, eds. S. Y. Chen & Q. Li, 360-365. Athens: World Scientific and Engineering Acad and Soc.
  24. Santos, M. F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J. 2009. Information Architecture for Intelligent Decision Support in Intensive Medicine. In 8th WSEAS International Conference on APPLIED COMPUTER & APPLIED COMPUTATIONAL SCIENCE (ACACOS 7809). Hangzhou, China,: WSEAS.
  25. Silva, A. 2007. Modelos de Inteligência Artificial na análise da monitorização de eventos clínicos adversos, Disfunção/Falência de órgãos e prognóstico do doente critico. Tese de doutoramento, ciências médicas, universidade do Porto.
  26. Silva, Á., P. Cortez, M. F. Santos, L. Gomes & J. Neves. 2004. Multiple organ failure diagnosis using adverse events and neural networks. In 6 th International Conference on Enterprise Information Systems, 401- 408. Springer.
  27. Silva, Á., J. Pereira, M. Santos, L. Gomes & J. Neves. 2003. Organ failure prediction based on clinical adverse events: a cluster model approach. 3th International Conference on Artificial Intelligence and Applications: ACTA Press.
  28. Turban, E., J. E. Aronson & T.-P. Liang. 2005. Decision Support Systems and Intelligent Systems. Prentice Hall.
  29. Vincent, J. L., R. Moreno, J. Takala, S. Willatts, A. De Mendonca, H. Bruining, C. K. Reinhart, P. M. Suter & L. G. Thijs (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive care medicine, 22, 707- 710.
  30. Ying, Z., C. T. Silvers & A. G. Randolph. 2007. RealTime Evaluation of Patient Monitoring Algorithms for Critical Care at the Bedside. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2783-2786.
Download


Paper Citation


in Harvard Style

Portela F., Santos M., Vilas Boas M., Rua F., Silva Á. and Neves J. (2010). REAL-TIME INTELLIGENT DECISION SUPPORT IN INTENSIVE MEDICINE . In Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010) ISBN 978-989-8425-30-0, pages 44-50. DOI: 10.5220/0003098200440050


in Bibtex Style

@conference{kmis10,
author={Filipe Portela and Manuel Santos and Marta Vilas Boas and Fernando Rua and Álvaro Silva and José Neves},
title={REAL-TIME INTELLIGENT DECISION SUPPORT IN INTENSIVE MEDICINE},
booktitle={Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010)},
year={2010},
pages={44-50},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003098200440050},
isbn={978-989-8425-30-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Management and Information Sharing - Volume 1: KMIS, (IC3K 2010)
TI - REAL-TIME INTELLIGENT DECISION SUPPORT IN INTENSIVE MEDICINE
SN - 978-989-8425-30-0
AU - Portela F.
AU - Santos M.
AU - Vilas Boas M.
AU - Rua F.
AU - Silva Á.
AU - Neves J.
PY - 2010
SP - 44
EP - 50
DO - 10.5220/0003098200440050