DECODING SSVEP RESPONSES USING TIME DOMAIN CLASSIFICATION

Nikolay V. Manyakov, Nikolay Chumerin, Adrien Combaz, Arne Robben, Mark M. Van Hulle

2010

Abstract

In this paper, we propose a new time domain method for decoding the steady-state visual evoked potential recorded while the subject is looking at stimuli flickering with constant frequencies. Using several such stimuli, with different frequencies, a brain-computer interface can be built. We have assessed the influence of the number of electrodes on the decoding accuracy. A comparison between active wet- and bristle dry electrodes were made. The dependence between accuracy and the length of the EEG interval used for decoding was shown.

References

  1. Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H. (2000). The thought translation device (ttd) for completely paralyzedpatients. IEEE Transactions on Rehabilitation Engineering, 8(2):190-193.
  2. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.- R., and Curio, G. (2007). The non-invasive berlin braincomputer interface: fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2):539-550.
  3. Cheng, M., Gao, X., Gao, S., and Xu, D. (2002). Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering, 49(10):1181-1186.
  4. Combaz, A., Manyakov, N., Chumerin, N., Suykens, J., and Van Hulle, M. (2009). Feature Extraction and Classification of EEG Signals for Rapid P300 Mind Spelling.
  5. In 2009 International Conference on Machine Learning and Applications, pages 386-391. IEEE.
  6. de Peralta Menendez, R., Dias, J., Soares, J., Prado, H., and Andino, S. (2009). Multiclass brain computer interface based on visual attention. In ESANN2009 proceedings, pages 437-442.
  7. Farwell, L. and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalogr Clin Neurophysiol., 70(6):510-523.
  8. Gao, Y., R., W., X., G., B., H., and S., G. (2006). A practical VEP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2).
  9. Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N. (2001). Brain-computer communication: unlocking the locked. Psychological Bulletin, 127(3):358-375.
  10. Luck, S. J. (2005). An introduction to event-related potentials technique. The MIT Press, Cambridge, Massachusetts.
  11. Luo, A. and Sullivan, T. (2010). A user-friendly SSVEPbased brain-computer interface using a time-domain classifier. Journal of Neural Engineering, 7:026010.
  12. Manyakov, N., Chumerin, N., Combaz, A., and Hulle, M. (2010). On the Selection of Time Interval and Frequency Range of EEG Signal Preprocessing for P300 Brain-Computer Interfacing. In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, pages 57-60. Springer.
  13. Pfurtscheller, G., Guger, C., Müller, G., Krausz, G., and Neuper, C. (2000). Brain oscillations control hand orthosis in a tetraplegic. Neuroscience letters, 292(3):211- 214.
  14. Pierce, J. (1980). An Introduction to Information Theory. Dover, New York.
  15. Sajda, P., Müller, K. R., and Shenoy, K. V. (2008). Braincomputer interfaces. IEEE Signal Proccessing Magazine, 25(1):16-17.
  16. Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and Shenoy, K. V. (2006). A high-performance braincomputer interface. Nature, 442:195-198.
  17. Yazicioglu, R., Torfs, T., Merken, P., Penders, J., Leonov, V., Puers, R., Gyselinckx, B., and Van Hoof, C. (2009). Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectronics Journal, 40(9):1313-1321.
Download


Paper Citation


in Harvard Style

V. Manyakov N., Chumerin N., Combaz A., Robben A. and M. Van Hulle M. (2010). DECODING SSVEP RESPONSES USING TIME DOMAIN CLASSIFICATION . In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010) ISBN 978-989-8425-32-4, pages 376-380. DOI: 10.5220/0003106103760380


in Bibtex Style

@conference{icnc10,
author={Nikolay V. Manyakov and Nikolay Chumerin and Adrien Combaz and Arne Robben and Mark M. Van Hulle},
title={DECODING SSVEP RESPONSES USING TIME DOMAIN CLASSIFICATION},
booktitle={Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)},
year={2010},
pages={376-380},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003106103760380},
isbn={978-989-8425-32-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation - Volume 1: ICNC, (IJCCI 2010)
TI - DECODING SSVEP RESPONSES USING TIME DOMAIN CLASSIFICATION
SN - 978-989-8425-32-4
AU - V. Manyakov N.
AU - Chumerin N.
AU - Combaz A.
AU - Robben A.
AU - M. Van Hulle M.
PY - 2010
SP - 376
EP - 380
DO - 10.5220/0003106103760380