ACCURATE LATENCY CHARACTERIZATION FOR VERY LARGE ASYNCHRONOUS SPIKING NEURAL NETWORKS
Mario Salerno, Gianluca Susi, Alessandro Cristini
2011
Abstract
The simulation problem of very large fully asynchronous Spiking Neural Networks is considered in this paper. To this purpose, a preliminary accurate analysis of the latency time is made, applying classical modelling methods to single neurons. The latency characterization is then used to propose a simplified model, able to simulate large neural networks. On this basis, networks, with up to 100,000 neurons for more than 100,000 spikes, can be simulated in a quite short time with a simple MATLAB program. Plasticity algorithms are also applied to emulate interesting global effects as the Neuronal Group Selection.
References
- E. M. Izhikevich, J. A. Gally, G. M. Edelman, 2004: “Spike-timing dynamics of neuronal groups”, 14:933- 944. Oxford University press.
- W. Maas, 1997: “Networks of Spiking Neurons: The Third Generation of Neural Network Models”. Elsevier Science Ltd.
- E. M. Izhikevich, 2004: “Which model to use for cortical spiking neurons?” IEEE Transactions on neural networks, Vol. 15
- G. M. Edelman, 1987: “Neural Darwinism: The Theory of Neuronal Group Selection”. Basic Books, New York.
- G. L. Gernstein, B. Mandelbrot, 1964: “Random walk models for the spike activity of a single neuron”. Biophisical journal, Vol.4.
- E. M. Izhikevich, 2006: “Polychronization: computation with spikes”. Neural Computation 18, 18:245-282.
- S. Boudkkazi, E. Carlier, N. Ankri, O. Caillard, P. Giraud, L. Fronzaroli-Molinieres and D. Debanne, 2007: “Release-Dependent Variations in Synaptic Latency: A Putative Code for Short- and Long-Term Synaptic Dynamics”.Neuron, volume 56, issue 6.
- E. M. Izhikevich, 2007: “Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting”. The MIT press.
- M. D'Haene, B. Schrauwen, J. V. Campenhout and D. Stroobandt, 2009: “Accelerating Event-Driven Simulation of Spiking Neurons with Multiple Synaptic Time Constants”. Neural computation, apr. 21(4).
- S. Ramon y Cajal, 1909, 1911: “Histologie du Systeme Nerveux de l'Homme et des Vertebres, vol. I & II”.
- L. Lapicque, 1907: “Recherches quantitatives sur l'excitation électrique des nerfs traitée comme une polarization”.
- A. L. Hodgkin, A.F. Huxley, 1952: “A quantitative description of membrane current and application to conduction and excitation in nerve”, Journal of Physiology, 117, 500-544.
- R. FitzHugh, 1955: “Mathematical models of threshold phenomena in the nerve membrane”. Bull. Math.Biophysics
- L. O. Chua, L.Yang, 1988: “Cellular Neural Networks: Theory”. IEEE Trans. Circuits Syst., vol. 35.
Paper Citation
in Harvard Style
Salerno M., Susi G. and Cristini A. (2011). ACCURATE LATENCY CHARACTERIZATION FOR VERY LARGE ASYNCHRONOUS SPIKING NEURAL NETWORKS . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011) ISBN 978-989-8425-36-2, pages 116-124. DOI: 10.5220/0003134601160124
in Bibtex Style
@conference{bioinformatics11,
author={Mario Salerno and Gianluca Susi and Alessandro Cristini},
title={ACCURATE LATENCY CHARACTERIZATION FOR VERY LARGE ASYNCHRONOUS SPIKING NEURAL NETWORKS},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)},
year={2011},
pages={116-124},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003134601160124},
isbn={978-989-8425-36-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2011)
TI - ACCURATE LATENCY CHARACTERIZATION FOR VERY LARGE ASYNCHRONOUS SPIKING NEURAL NETWORKS
SN - 978-989-8425-36-2
AU - Salerno M.
AU - Susi G.
AU - Cristini A.
PY - 2011
SP - 116
EP - 124
DO - 10.5220/0003134601160124