AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION
Jakob M. Tomasik, Wjatscheslaw Galjan, Kristian M. Hafkemeyer, Dietmar Schroeder, Wolfgang H. Krautschneider
2011
Abstract
A CMOS configurable system-on-chip (SoC) for biomedical signal acquisition is described. The SoC is composed of 10 channels, each channel including a programmable analog front-end (AFE) and a 20 bit analog-to-digital converter (ADC). The digitized signals are read out via a high-speed serial communication bus. The AFE includes a common-mode rejection ratio (CMRR) calibration circuitry resulting in a CMRR of more than 80 dB and an active DC-suppression circuitry giving the DC-coupled instrumentation amplifier the possibility to tolerate DC-offsets of up to ±1 V for a power supply voltage of 3.3 V. In low-noise mode the AFE achieves an input referred noise of less than 50 nVrms for EEG application (0.5-70 Hz) and the power consumption of a channel including AFE and ADC is less than 5 mW in low-power mode. A prototype has been fabricated in a 0.35 µm CMOS process.
References
- Martins, R., Selberherr, S., and Vaz, F. A., (1998). A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas., 47(5), 1191-1196.
- Ng, K. A., and Chan, P. K., (2005). A CMOS analog front-end IC for portable EEG/ECG monitoring. IEEE Trans. Circuits Syst. I, Reg. Papers, 52(11), 2335- 2346.
- Yazicioglu, R. F., Merken, P., Puers, R., and Van Hoof, C., (2007). 60 µW 60 nV/vHz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits, 42(5), 1100-1110.
- Desel, T., Reichel, T., Rudischhauser, S., and Hauer, H., (1996). A CMOS nine channel ECG measurement IC. 2nd International Conference ASIC.
- Fuchs, B., Vogel, S., and Schroeder, D. (2002). Universal application-specific integrated circuit for bioelectric data acquisition. Medical Engineering and Physics 24, 695-701.
- Martin, T., Jovanov, E., and Raskovic, D., (2000). Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. The Fourth International Symposium on Wearable Computers, 43-49.
- Galjan, W., Naydenova, D., Tomasik, J. M., Schroeder, D., and Krautschneider, W. H., (2008). A portable SoC-based ECG-system for 24h x 7d operating time. In Proceedings of IEEE Biocas 2008, Baltimore, USA, 85-88.
- Scheer, H. J., Sander, and T., Trahms, L., (2006). The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas., 27, 109-117.
- Bronzino, J. D., (2000). The biomedical engineering handbook. 2nd ed. CRC Press.
- Webster, J. G., (1998). Medical instrumentation: application and design. 3rd ed. Wiley & Sons, New York.
- Van Helleputte, N., Tomasik, J. M., Galjan, W., MoraSanchez, A., Schroeder, D., Krautschneider, W. H., and Puers, R., (2008). A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sens. Actuators A: Phys., vol. 142, Issue 1, 361-368.
- Winter, B. B., and Webster, J. G., (1983). Driven-right-leg circuit design. IEEE Trans. Biomed. Eng., 30, pp. 62- 66.
- Bronskowski, C. and Schroeder, D. (2006). An ultra lownoise operational amplifier with programmable noisepower trade-off. In Proceedings 32nd ESSCIRC 2006, Montreux, Switzerland, 368-371.
- Allen, P. E, and Holberg, D. R., (2002). CMOS Analog Circuit Design. Oxford University Press.
- Maxim Integrated Products, (2000). Choosing the optimum buffer / ADC combination for your application. Application Note 1094.
- Medeiro, F., Pérez-Verdú, B., de la Rosa, J. M., and Rodríguez-Vázquez, Á., (1997). Using CAD Tools for Shortening the Design Cycle of High-Performance SDM: A 16.4bit 9.6 kHz 1.71mW SDM in CMOS 0.7µm Technology. International Journal of Circuit Theory and Applications, 25, 319-334.
- Fuchs, B. (2004). Integrierte Sensorschaltungen zur EKGund EEG-Ableitung mit prädiktiver Signalverarbeitung. PhD thesis, Institute of Nanoelectronics, Hamburg University of Technology, Shaker Verlag, Aachen.
- Dijkstra, E., Nys, O., Piguet, C., and Degrauwe, M., (1988). On the use of modulo arithmetic comb filters in sigma delta modulators. In IEEE Proc. ICASSP88, 2001-2004.
- Lu, A., and Roberts, G., (1994). A high-quality analog oscillator using oversampling D/A conversion techniques. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 41 (7), 437-444.
Paper Citation
in Harvard Style
Tomasik J., Galjan W., Hafkemeyer K., Schroeder D. and Krautschneider W. (2011). AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011) ISBN 978-989-8425-37-9, pages 36-45. DOI: 10.5220/0003137600360045
in Bibtex Style
@conference{biodevices11,
author={Jakob M. Tomasik and Wjatscheslaw Galjan and Kristian M. Hafkemeyer and Dietmar Schroeder and Wolfgang H. Krautschneider},
title={AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)},
year={2011},
pages={36-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003137600360045},
isbn={978-989-8425-37-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)
TI - AN INTEGRATED MULTI-CHANNEL SYSTEM FOR BIOMEDICAL SIGNAL ACQUISITION
SN - 978-989-8425-37-9
AU - Tomasik J.
AU - Galjan W.
AU - Hafkemeyer K.
AU - Schroeder D.
AU - Krautschneider W.
PY - 2011
SP - 36
EP - 45
DO - 10.5220/0003137600360045