UNSUPERVISED 3D SEGMENTATION OF HIPPOCAMPUS IN BRAIN MR IMAGES

Sandeep S. Kaushik, Jayanthi Sivaswamy

2011

Abstract

The most widely followed procedure for diagnosis and prognosis of dementia is structural neuroimaging of hippocampus by means of MR. Hippocampus segmentation is of wide interest as it enables quantitative assessment of the structure. In this paper, we propose an algorithm for hippocampus segmentation that is unsupervised and image driven. It is based on a hybrid approach which combines a coarse segmentation and surface evolution. A coarse solution is derived using region growing which is further refined using a modified version of the physics based water flow model (Liu and Nixon, 2007). The proposed method has been tested on a publicly available dataset. The performance of this method is assessed using Dice coefficient against the ground truth provided for 25 volume images. It is consistent across volumes and the average Dice values are comparable to a multi-atlas based method reported on a subset of the same dataset.

References

  1. Ahmed, M., Yamany, S., Mohamed, N., Farag, A., and Moriarty, T. (2002). A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. Medical Imaging, IEEE Transactions on, 21(3):193 - 199.
  2. Akhondi-Asl, A., Jafari-Khouzani, K., Elisevich, K., and Soltanian-Zadeh, H. (2010). Hippocampal volumetry for lateralization of temporal lobe epilepsy: Automated versus manual methods. NeuroImage, In Press, Corrected Proof:-.
  3. Akselrod-Ballin, A., Galun, M., Gomori, J. M., Brandt, A., and Basri1, R. (2007). Prior knowledge driven multiscale segmentation of brain mri. MICCAI 2007, 4792/2007:118-126.
  4. Bernasconi, N., Bernasconi, A., Caramanos, Z., Antel, S. B., Andermann, F., and Arnold, D. L. (2003). Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain, 126(2):462-469.
  5. Chupin, M., Cuingnet, R., Lemieux, L., Lehericy, S., Benali, H., Garnero, L., and Colliot, O. (2008). Fully automatic hippocampus segmentation discriminates between alzheimer's disease and normal aging - data from the adni database. In MICCAI Workshop on CAPH.
  6. Hurley, D. J., Nixon, M. S., and Carter, J. N. (2005). Force field feature extraction for ear biometrics. Computer Vision and Image Understanding, 98(3):491 - 512.
  7. Jafari-Khouzani, K. (2010). Mri data set for hippocampus segmentation by department of diagnostic radiology at henry ford hospital. http://www.radiologyresearch.org/HippocampusSeg mentationDatabase/.
  8. Liu, X. U. and Nixon, M. S. (2007). Image and volume segmentation by water flow. In ISVC'07: Proceedings of the 3rd international conference on Advances in visual computing, pages 62-74, Berlin, Heidelberg. Springer-Verlag.
  9. Ltjnen, J. M., Wolz, R., Koikkalainen, J. R., Thurfjell, L., Waldemar, G., Soininen, H., and Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage, 49(3):2352 - 2365.
  10. McInerney, T. and Terzopoulos, D. (1999). Topology adaptive deformable surfaces for medical image volume segmentation. Medical Imaging, IEEE Transactions on, 18(10):840 -850.
  11. Morra, J., Tu, Z., Apostolova, L., Green, A., Toga, A., and Thompson, P. (2008). Automatic subcortical segmentation using a novel contextual model. MICCAI.
  12. Morra, J., Tu, Z., Apostolova, L., Green, A., Toga, A., and Thompson, P. (2010). Comparison of adaboost and support vector machines for detecting alzheimer's disease through automated hippocampal segmentation. Medical Imaging, IEEE Transactions on, 29(1):30 - 43.
  13. Pohle, R., Behlau, T., and Toennies, K. D. (2003). Segmentation of 3d medical image data sets with a combination of region-based initial segmentation and active surfaces. Medical Imaging 2003: Image Processing, 5032:1225-1232.
  14. Sabuncu, M. R., Yeo, B. T., Leemput, K., Fischl, B., and Golland, P. (2009). Supervised nonparametric image parcellation. In MICCAI 2009, pages 1075-1083, Berlin, Heidelberg. Springer-Verlag.
Download


Paper Citation


in Harvard Style

S. Kaushik S. and Sivaswamy J. (2011). UNSUPERVISED 3D SEGMENTATION OF HIPPOCAMPUS IN BRAIN MR IMAGES . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011) ISBN 978-989-8425-35-5, pages 182-187. DOI: 10.5220/0003145401820187


in Bibtex Style

@conference{biosignals11,
author={Sandeep S. Kaushik and Jayanthi Sivaswamy},
title={UNSUPERVISED 3D SEGMENTATION OF HIPPOCAMPUS IN BRAIN MR IMAGES},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)},
year={2011},
pages={182-187},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003145401820187},
isbn={978-989-8425-35-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2011)
TI - UNSUPERVISED 3D SEGMENTATION OF HIPPOCAMPUS IN BRAIN MR IMAGES
SN - 978-989-8425-35-5
AU - S. Kaushik S.
AU - Sivaswamy J.
PY - 2011
SP - 182
EP - 187
DO - 10.5220/0003145401820187