COMBINING PARTICLE SWARM OPTIMISATION WITH GENETIC ALGORITHM FOR CONTEXTUAL ANALYSIS OF MEDICAL IMAGES

Jonathan Goh, Lilian Tang, Lutfiah Al turk, Yaochu Jin

2011

Abstract

Micro aneurysms are one of the first visible clinical signs of diabetic retinopathy and their detection can help diagnose the progression of the disease. In this paper, we propose to use a hybrid evolutionary algorithm to evolve the structure and parameters of a Hidden Markov Model to obtain an optimised model that best represents the different contexts of micro aneurysms sub images. This technique not only identifies the optimal number of states, but also determines the topology of the Hidden Markov Model, along with the initial model parameters. We also make a comparison between evolutionary algorithms to determine the best method to obtain an optimised model.

References

  1. Abbass, H. A., 2002. “An evolutionary artificial neural networks approach for breast cancer diagnosis”, Artificial Intelligence in Medicine, Vol. 25.
  2. Bakis, R., 1976. Continuous speech word recognition via centisecond acoustic states, Proceedings ASA Meeting, Washington,DC.
  3. Bhuriyakorn, P., Punyabukkana, P., Suchato, A., 2008. “A Genetic Algorithm-aided Hidden Markov Model Topology Estimation for Phoneme Recognition of Thai Continuous Speech” Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing.
  4. Goh, J., Tang, H. L., Al turk, L., Vrikki, C., Saleh, G., 2010. “Detecting Micro aneurysms using Multiple Classifiers and Hidden Markov Model”, 3rd International Conference on Health Informatics, Valencia, Spain.
  5. Kwong, S., Chan, C. W., Man, K. F., Tang, K. S., 2001. “Optimization of HMM topology and its model parameters by genetic algorithms”, Pattern Recognition, 34:509-522/
  6. Lim, M. H., Xu, Y. L., 2005. “Application of Hybird Genetic Algorithm in Supply Chain Management,” Special Issue on Multi Objective Evolution: Theory and Applications, Intternational Journal of Computers, Systems and Signals, Vol. 6.
  7. Liu, B., Wang, L., Jin, Y., Huang, D., 2007. “Designing Neural Networks using PSO-Based Memetic Algorithm”, Advances in Neural Networks, Vol. 4493.
  8. Lu, G., Jiang, D., Zhao, R., 2007. “Single Stream DBN Model Based Triphone for continuous speech recognition”, Proceedings of the 9th IEEE International Symposium on Multimedia Workshop.
  9. Meindert, N., Ginneken, B., Stal, J., Suttorp-Schulten, M., Abramoff, M., 2005. “Automatic Detection of Red Lesions in Digital Color Fundus Photograph”, IEEE Transaction on Medical Imaging, Vol. 25(5).
  10. Morizane, K., Nakamura, K., Toda, T., Saruwatari, H., Shikano, K., 2009. “Emphasized Speech Synthesis Based on Hidden Markov Models”, 2009 Oriental COCOSDA International Conference on Speech Database and Assessments.
  11. Ong, Y. S., Lim, M. H., Chen, X. S., 2010. “Research Frontier: Memetic Computation - Past, Present & Future”, IEEE Computational Intelligence Magazine, In Press.
  12. Ong, Y. S., Nair, P. B., Keane, A. J., 2003. “Evolutionary Optimisation of Computationally Expensive Problems via Surrogate Modelling”, American Institute of Aeronautics and Astronautics Journal, Vol. 41.
  13. Parui, S. K. ., Guin, K., Bhattacharyam, U., Chaudhuri, B. B, 2008. “Online Handwritten Bangla Character Recognition Using HMM”, IEEE Transaction 2008.
  14. Sinthanayothin, C., Boyce, J. F., Williamsom, T. H., Cool, H.L., Mensah, E., Lai, S., Usher, D., 2002. “Automated Detection of Diabetic Retinopathy on Digital Fundus Images”, Diabetic Medicine, Vol. 19, ppl105-112.
  15. Walter, T., Klein, J. C., 2000.“Automatic Detection of Micro aneurysms in Color Fundus Images of the Human Retina by means of the Bounding Box Closing”, Proceedings of the 3rd International Symposium on Medical Data Analysis, Rome, Italy.
  16. Won, K. J., Prugel-Bennet, A., Krogh, A., 2006. “Evolving the Structure of Hidden Markob Models”, IEEE Transaction on Evoutionary Computation, Vol. 10 (1).
  17. Xiao, J. Y., Zou, L., Li, C., 2007. “Optimization of hidden Markov model by a genetic algorithm for web information extraction”, Proceedings of the 2007 International Conference on Intelligent Systems and Knowledge Engineering, Chengdu, pp. 153-158.
Download


Paper Citation


in Harvard Style

Goh J., Tang L., Al turk L. and Jin Y. (2011). COMBINING PARTICLE SWARM OPTIMISATION WITH GENETIC ALGORITHM FOR CONTEXTUAL ANALYSIS OF MEDICAL IMAGES . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011) ISBN 978-989-8425-34-8, pages 235-241. DOI: 10.5220/0003155902350241


in Bibtex Style

@conference{healthinf11,
author={Jonathan Goh and Lilian Tang and Lutfiah Al turk and Yaochu Jin},
title={COMBINING PARTICLE SWARM OPTIMISATION WITH GENETIC ALGORITHM FOR CONTEXTUAL ANALYSIS OF MEDICAL IMAGES},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011)},
year={2011},
pages={235-241},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003155902350241},
isbn={978-989-8425-34-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2011)
TI - COMBINING PARTICLE SWARM OPTIMISATION WITH GENETIC ALGORITHM FOR CONTEXTUAL ANALYSIS OF MEDICAL IMAGES
SN - 978-989-8425-34-8
AU - Goh J.
AU - Tang L.
AU - Al turk L.
AU - Jin Y.
PY - 2011
SP - 235
EP - 241
DO - 10.5220/0003155902350241