BIOINSPIRED SENSORY INTEGRATION FOR ENVIRONMENT PERCEPTION EMBEDDED SYSTEMS

Jordi Madrenas, Daniel Fernández, Jordi Cosp, J. Manuel Moreno, Luis Martínez-Alvarado, Giovanny Sánchez

2011

Abstract

In this work, the architecture of a system intended for bioinspired environment perception is described. Considering the technology trends and applications requirements, the properties of such a system are discussed. The system consists of four main blocks: a) A set of different integrated microsensors and microactuators with the associated signal conditioning circuits; b) A data encoding block that in its simplest form performs spike encoding of information; c) a bioinspired digital processing block that efficiently emulates a spiking neuron network; d) a monitoring and self-adaptation block that provides feedback to the sensors and actuators. In its final implementation, the full system would eventually be almost fully integrated in a CMOS integrated circuit.

References

  1. Akyildiz I. F. et al., 2002, Wireless sensor networks: a survey, Computer Networks, Vol. 38, Issue 4, 15 March 2002, pp. 393-422.
  2. Baltes H. et al., 2002. CMOS MEMS-present and future. Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on. IEEE; 2002:459-466.
  3. Brand O. and Fedder G. K. eds CMOS-MEMS, Advanced Micro & Nanosystems (Vol. 2). Weinheim: WileyVCH; 2005:596.
  4. Bentley, P. J. 2007. Systemic computation: A model of interacting systems with natural characteristics. Int. J. Parallel Emerg. Distrib. Syst. 22, 2 (Mar. 2007), 103- 121.
  5. Delbruck T., Oberhoff D. Self-biasing low power adaptive photoreceptor. 2004 IEEE International Symposium on Circuits and Systems. 2004:IV-844-7.
  6. Dobson, S. et al., 2010. Fulfilling the Vision of Autonomic Computing. Computer, vol.43, no.1, pp.35-41, Jan. 2010.
  7. Fernández D. et al., 2010. Experiments on the Release of CMOS-Micromachined Metal Layers. Journal of Sensors, vol. 2010, Article ID 937301, 7 pages, 2010.
  8. Gad-el-Hak M., 2001. The MEMS Handbook, (Editor) CRC; 1st edition, September 27, 2001.
  9. Gouveia, L. C. et al., 2009. A CMOS implementation of a spike event coding scheme for analog arrays. Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, pp.149-152, 24-27 May 2009.
  10. Gudemann, M. et al. 2008. A Specification and Construction Paradigm for Organic Computing Systems. Self-Adaptive and Self-Organizing Systems, 2008. SASO 7808. Second IEEE International Conference on, pp.233-242, 20-24 Oct. 2008.
  11. Guo J., Sonkusale, S., 2009. A High Dynamic Range CMOS Image Sensor for Scientific Imaging Applications. Sensors Journal, IEEE. Vol. 9, Iss. 10, 2009, pp. 1209 - 1218.
  12. Hauptvogel M. et al., 2009. SpiNDeK: An Integrated Design Tool for the Multiprocessor Emulation of Complex Bioinspired Spiking Neural Networks. IEEE Congress on Evolutionary Computation (CEC 2009). 18-21 May, 2009, pp.142-149.
  13. Hawkins J., Blakeslee S., 2004. On intelligence. Times books, Henry Holt and Company, 2004.
  14. Hill, J. et al., 2000. System architecture directions for networked sensors. SIGPLAN Not. 35, 11 (Nov. 2000), pp. 93-104.
  15. Hollar S. E. A., 1996. COTS Dust, B.S. Mass.Inst. of Tech., http://siliconrobot.com/publications/cotsdust. pdf.
  16. Iglesias J. et al. 2005. Dynamics of pruning in simulated large-scale spiking neural networks, Biosystems, Volume 79, Issues 1-3, Pages 11-20.
  17. Izhikevich E. M., 2006. Polychronization: Computation with Spikes. Neural Computation, Vol. 18, No. 2. (1 February 2006), pp. 245-282.
  18. Kephart, J. O.; Chess, D. M., 2003. The vision of autonomic computing. Computer, vol.36, no.1, pp. 41- 50, Jan 2003.
  19. Lemkin M, Boser B. E. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE Journal of Solid-State Circuits. 1999;34(4):456-468.
  20. Lorincz K. and Welsh M., 2006. MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking, Personal and Ubiquitous Computing, Special Issue on Location and Context-Awareness, Springer-Verlag, October 2006.
  21. Madrenas J., Moreno J. M., 2009. Strategies in SIMD Computing for Complex Neural Bioinspired Applications. NASA/ESA Conference on Adaptive Hardware and Systems, AHS, pp. 376-381, 2009.
  22. Matranga G, et al., 2002. CMOS temperature sensor. US Patent 6, 489, 831. 2002.
  23. Michalik P, et al., 2010. Technology-portable mixedsignal sensing architecture for CMOS-integrated zaxis surface-micromachined accelerometers. Mixed Design of Integrated Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference. 2010:431-435.
  24. Moreno J. M. et al., 2009. Synchronous Digital Implementation of the AER Communication Scheme for Emulating Large-Scale Spiking Neural Networks Models. Adaptive Hardware and Systems, 2009. NASA/ESA Conference on, pp.189-196, July 29 2009- Aug. 1 2009.
  25. Nachman, L. et al., 2005. The Intel® mote platform: a Bluetooth-based sensor network for industrial monitoring. Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, vol., no., pp. 437- 442, 15 April 2005.
  26. Park S, Min C, Cho S, 2009. A 95nW ring oscillator-based temperature sensor for RFID tags in 0.13µm CMOS. Circuits and Systems, 2009. ISCAS. 2009.
  27. Prakash S. B., Cohen M. H., Abshire P. A. Detection of on-chip temperature gradient using a 1.5V low power CMOS temperature sensor. 2006 IEEE International Symposium on Circuits and Systems. 2006:1171-1174.
  28. Randjelovic, Z. B. et al., 2002. Highly sensitive Hall magnetic sensor microsystem in CMOS technology. Solid-State Circuits, IEEE Journal of, vol.37, no.2, pp.151-159, Feb 2002.
  29. Ren Y, Wang C, Hong H., 2009. An All CMOS temperature sensor for thermal monitoring of VLSI circuits. ICTD 2009. IEEE Circuits. 2009.
  30. Senturia S. D., 2001, Microsystem Design, Kluwer Academic Publishers; Jan. 2001.
  31. Sivilotti M., 1991. Wiring Considerations in Analog VLSI Systems With Applications to Field Programmable Networks, Ph.D. dissertation, California Institute of Technology, Pasadena, 1991.
  32. Soto, V. J.; et al., 2009. Implementation of a Dynamic Fault-Tolerance Scaling Technique on a Self-Adaptive Hardware Architecture, Reconfigurable Computing and FPGAs, 2009. ReConFig 7809. International Conference on, pp.445-450, 9-11 Dec. 2009.
  33. Takeuchi, T. et al., 2009. A single-chip sensor node LSI with synchronous MAC protocol and divided databuffer SRAM. International SoC Design Conference (ISOCC), pp.202-207, 22-24 Nov. 2009.
  34. Udrea, F. et al., 2008. CMOS temperature sensors - concepts, state-of-the-art and prospects. Semiconductor Conference, 2008. CAS 2008. International , vol.1,, pp.31-40, 13-15 Oct. 2008.
  35. Upegui A. et al., 2007. The Perplexus bio-inspired reconfigurable circuit. Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pp. 600-605, IEEE 2007.
  36. Wang C., 2010. Wide-Dynamic-Range and HighSensitivity Current-to-Voltage Converters. Circuits, Systems and Signal Processing. 2010; 29(6):1223- 1236.
  37. Warneke, B. et al., 2001. Smart Dust: communicating with a cubic-millimeter computer, Computer, vol.34, no.1, pp.44-51, Jan 2001.
  38. Wong, A. C. W. et al., 2008, A 1 V Wireless Transceiver for an Ultra-Low-Power SoC for Biotelemetry Applications. Solid-State Circuits, IEEE Journal of, vol.43, no.7, pp.1511-1521, July 2008.
  39. Woo K, Meninger S, Xanthopoulos T, E. Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring. Solid-State Circuits, ISSCC, Vol 40; 2009:68-70
  40. Wu J, Fedder G, Carley L. A low-noise low-offset capacitive sensing amplifier for a 50-µg/v Hz monolithic CMOS MEMS accelerometer. Solid-State Circuits, IEEE. 2004; 39 (5):722-730.
  41. Zhou M.X. et al., 2004. A fully CMOS compatible integrated absolute pressure sensor. Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on, vol.3, pp. 1816- 1819, 18-21 Oct. 2004.
Download


Paper Citation


in Harvard Style

Madrenas J., Fernández D., Cosp J., Moreno J., Martínez-Alvarado L. and Sánchez G. (2011). BIOINSPIRED SENSORY INTEGRATION FOR ENVIRONMENT PERCEPTION EMBEDDED SYSTEMS . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011) ISBN 978-989-8425-37-9, pages 260-267. DOI: 10.5220/0003190202600267


in Bibtex Style

@conference{biodevices11,
author={Jordi Madrenas and Daniel Fernández and Jordi Cosp and J. Manuel Moreno and Luis Martínez-Alvarado and Giovanny Sánchez},
title={BIOINSPIRED SENSORY INTEGRATION FOR ENVIRONMENT PERCEPTION EMBEDDED SYSTEMS},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)},
year={2011},
pages={260-267},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003190202600267},
isbn={978-989-8425-37-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2011)
TI - BIOINSPIRED SENSORY INTEGRATION FOR ENVIRONMENT PERCEPTION EMBEDDED SYSTEMS
SN - 978-989-8425-37-9
AU - Madrenas J.
AU - Fernández D.
AU - Cosp J.
AU - Moreno J.
AU - Martínez-Alvarado L.
AU - Sánchez G.
PY - 2011
SP - 260
EP - 267
DO - 10.5220/0003190202600267