Bone Surface Segmentation in Ultrasound Images: Application in Computer Assisted Intramedullary Nailing of the Tibia Shaft

Agnès Masson-Sibut, Eric Petit, François Leitner, Julien Normand, Amir Nakib, Jean-Baptiste Pinzuti

2011

Abstract

This paper deals with the use of ultrasound images in order to develop a Computer Assisted Orthopaedics Surgery system. Ultrasounds are easy to use in the Operating Room (OR), less expensive than other image modalities, and faster. We present an automatic method to extract anatomical landmarks from ultrasound images of femoral anterior condyles. The algorithm is based on an active contour model that uses an attraction field derived from an Euclidian-distance map. This segmentation process is a part of a global procedure that includes an interactive determination of the best image that could be chosen in order to obtain robust bone segmentation. This global procedure has been successfully tested on 11 volunteers.

References

  1. D. Amin, T. Kanade, A. M. D. Gioia, and B. Jaramaz. Ultrasound Registration of the Bone Surface for Surgical Navigation. Computer Aided Surgery, (1):1-16, 2003.
  2. T. Binder, M. S üssner, D. Moertl, T. Strohmer, H. Baumgartner, G. Maurer, and G. Porenta. Artificial neural networks and spatial temporal contour linking for automated endocardial contour detection on echocardiograms: a novel approach to determine left ventricular contractile function. Ultrasound in medicine & biology, 25(7):1069-76, Sept. 1999.
  3. D.-R. Chen, R.-F. Chang, W. Kuo, M. Chen, and Y. Huang. Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Medical Biology, 30(5):1301-1310, Apr. 2002.
  4. P. Foroughi, E. Boctor, M. J. Swartz, R. H. Taylor, and G. Fichtinger. Ultrasound Bone Segmentation Using Dynamic Programming. 2007 IEEE Ultrasonics Symposium Proceedings, pages 2523-2526, Oct. 2007.
  5. I. Hacihaliloglu, R. Abugharbieh, A. Hodgson, and R. Rohling. Bone segmentation and fractire detection in ultrasound using 3D local phase features. MICCAI 2008, pages 287- 295, 2008.
  6. K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny. Automatic segmentation of breast lesions on ultrasound. Medical physics, 28(8):1652-9, Aug. 2001.
  7. A. K. Jain. Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. Proceedings of SPIE, 5373:131-142, 2004.
  8. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331, Jan. 1988.
  9. P. Laugier, F. Padilla, F. Peyrin, K. Raum, A. Saied, M. Talmant, and L. Vico. Current trends in ultrasonic investigation of bone. ITBM-RBM, 26:299-311, 2005.
  10. M. Mignotte, J. Meunier, and J.-C. Tardif. Endocardial Boundary Estimation and Tracking in Echocardiographic Images using Deformable Template and Markov Random Fields. Pattern Analysis & Applications, 4(4):256-271, Nov. 2001.
  11. A. Mishra. A GA based approach for boundary detection of left ventricle with echocardiographic image sequences. Image and Vision Computing, 21(11):967-976, Oct. 2003.
  12. J. Normand. Approche expérimentale de la navigation dans les fractures de la jambe. PhD thesis, Faculté de Médecine, Université de Reims, FRANCE, 2009.
  13. G. Xiao, M. Brady, J. A. Noble, and Y. Zhang. Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE transactions on medical imaging, 21(1):48- 57, Jan. 2002.
  14. C. Xu and J. L. Prince. Gradiant Vector Flow : A new external force for snakes. IEEE Proceedings Conference on Computer Vision Pattern Recognition, pages 66-71, 1997.
  15. J. Yan and T. Zhuang. Applying improved fast marching method to endocardial boundary detection in echocardiographic images. Pattern Recognition Letters, 24(15):2777, 2003.
  16. Y. Zhang, R. Rohling, and D. Pai. Direct surface extraction from 3D freehand ultrasound images. In Proceedings of the conference on Visualization'02, page 52. IEEE Computer Society, 2002.
Download


Paper Citation


in Harvard Style

Masson-Sibut A., Petit E., Leitner F., Normand J., Nakib A. and Pinzuti J. (2011). Bone Surface Segmentation in Ultrasound Images: Application in Computer Assisted Intramedullary Nailing of the Tibia Shaft . In Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems - Volume 1: MIAD, (BIOSTEC 2011) ISBN 978-989-8425-38-6, pages 34-42. DOI: 10.5220/0003307600340042


in Bibtex Style

@conference{miad11,
author={Agnès Masson-Sibut and Eric Petit and François Leitner and Julien Normand and Amir Nakib and Jean-Baptiste Pinzuti},
title={Bone Surface Segmentation in Ultrasound Images: Application in Computer Assisted Intramedullary Nailing of the Tibia Shaft},
booktitle={Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems - Volume 1: MIAD, (BIOSTEC 2011)},
year={2011},
pages={34-42},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003307600340042},
isbn={978-989-8425-38-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Medical Image Analysis and Description for Diagnosis Systems - Volume 1: MIAD, (BIOSTEC 2011)
TI - Bone Surface Segmentation in Ultrasound Images: Application in Computer Assisted Intramedullary Nailing of the Tibia Shaft
SN - 978-989-8425-38-6
AU - Masson-Sibut A.
AU - Petit E.
AU - Leitner F.
AU - Normand J.
AU - Nakib A.
AU - Pinzuti J.
PY - 2011
SP - 34
EP - 42
DO - 10.5220/0003307600340042