NOSE TIP DETECTION AND TRACKING IN 3D VIDEO SEQUENCES

Xiaoming Peng, Mohammed Bennamoun

2011

Abstract

Point cloud data processing is an important topic in geometric computing. One promising application of point cloud data processing is 3D face recognition. With the recent developments of 3D scanning technology, the emergence in the near future of 3D face recognition from 3D video sequences is eminent. Face tracking is a necessary step before the recognition of a face. In this paper, we propose the integration of a nose tip detection method into the process of tracking the face in a 3D video sequence. The nose tip detection method which does not require training nor does it rely on any particular model, can deal with both frontal and non-frontal poses, and is quite fast. Combined with the Iterative Closest Point (ICP) algorithm and a Kalman filter, the nose-tip-detection-based method achieved robust tracking results on real 3D video sequences. We have also shown that it can be used to coarsely estimate the roll, yaw and pitch angles of the face poses.

References

  1. Al-Osaimi, F., Bennamoun, M., Mian, A., 2009. An expression deformation approach to non-rigid 3d face recognition, International Journal of Computer Vision, 81: 302-316.
  2. Anuar L. H., Mashohor S., Mokhtar M., and Wan Adnan W.A. 2010. Nose tip region detection in 3D facial model across large pose variation and facial expression, IJCSI International Journal of Computer Science Issues, 7(4): 1-9.
  3. Besl, P. J., McKay, N. D., 1992. Reconstruction of RealWorld Objects via Simultaneous Registration and Robust Combination of Multiple Range Image,. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239-256.
  4. Bevilacqua V., Casorio P., and Mastronardi G. 2008. Extending Hough Transform to a points' cloud for 3Dface nose-tip detection, Lecture Notes in Artificial Intelligence, 5227: 1200-1209.
  5. Breitenstein, M. D., Kuettel, D., Weise, T., VanGool L. J., Pfister, H., 2008. Real-timeface pose estimation from single range images, In CVPR'08, pp.1-8.
  6. Chang, K. I., Bowyer, K. W., Flynn, P. J., 2006. Multiple nose region matching for 3D face recognition under varying facial expression, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10): 1695-1700.
  7. Chew W. J., Seng K. P., and Ang L. M. 2009. Nose tip detection on a three-dimensional face range image invariant to head pose, In IMCES 2009, pp. 858-862.
  8. Chua C. S., and Jarvis R. 1997. Point signatures: a new representation for 3D object recognition, International Journal of Computer Vision, 25(1): 63-85.
  9. Colombo A., Cusano C., and Schettini R. 2006. 3D face detection using curvature analysis, Pattern Recognition, 39(3): 444-455.
  10. Faltemier T. C., Bowyer K. W., and Flynn P. J. 2008. Rotated profile signatures for robust 3D feature detection, In the 8th IEEE International Conference on Automatic Face & Gesture Recognition, pp.1-7.
  11. Lu, X., Jain, A. K., 2008. Deformation modeling for robust 3d face matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8): 1346-1356.
  12. Malassiotis, S. and Strintzis, M. G. 2005. Robust real-time 3D head pose estimation from range data, Pattern Recognition, 38(8): 1153-1165.
  13. Matthews, I., Ishikawa, T., Baker S., 2004. The template update problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26: 810-815.
  14. Mian, A. S., Bennamoun, M., Owens, R., 2007. An efficient multimodal 2D-3D hybrid approach to automatic face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11): 1927-1943.
  15. Pears, N., Heseltine, T., Romero, M., 2009. From 3D point clouds to pose-normalized depth map, International Journal of Computer Vision, DOI 10.1007/s11263-009-0297-y.
  16. Peng, X., Bennamoun, M., and Mian, A.S. 2011. A training-free nose tip detection method from face range images. Pattern Recognition, 44(3): 544-558.
  17. Queirolo, C. C., Silva, L., Bellon, O. R. P., Segundo, M. P., 2010. 3D face recognition using simulated annealing and the surface interpenetration measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2): 206-219.
  18. Ren X., Song J., Ying H., Zhu Y., and Qiu X. 2007. Robust nose detection and tracking using GentleBoost and improved Lucas-Kanade optical flow algorithms, Lecture Notes in Computer Science, 4681: 1240-1246.
  19. Xu C., Tan T., Wang Y., Quan L. 2006. Combining local features for robust nose location in 3D facial data, Pattern Recognition Letters, 27(13): 1487-1494.
  20. Yang J., Liao Z., Li X., and Wu Z. 2009. A method for robust nose tip location across pose variety in 3D face data, In 2009 International Asia Conference on Informatics in Control, Automation and Robotics, pp. 114-117.
  21. Zhou, S. K., Chellappa, Aggarwal, R., G., 2009. Face tracking and recognition from video, Book Chapter from The Essential Guide to Video Processing, A. Bovic (Ed.), Academic Press.
Download


Paper Citation


in Harvard Style

Peng X. and Bennamoun M. (2011). NOSE TIP DETECTION AND TRACKING IN 3D VIDEO SEQUENCES . In Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011) ISBN 978-989-8425-45-4, pages 13-22. DOI: 10.5220/0003314900130022


in Bibtex Style

@conference{grapp11,
author={Xiaoming Peng and Mohammed Bennamoun},
title={NOSE TIP DETECTION AND TRACKING IN 3D VIDEO SEQUENCES},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)},
year={2011},
pages={13-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003314900130022},
isbn={978-989-8425-45-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2011)
TI - NOSE TIP DETECTION AND TRACKING IN 3D VIDEO SEQUENCES
SN - 978-989-8425-45-4
AU - Peng X.
AU - Bennamoun M.
PY - 2011
SP - 13
EP - 22
DO - 10.5220/0003314900130022