GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES

Anita Keszler, Tamás Szirányi, Zsolt Tuza

2011

Abstract

We introduce a new method for image segmentation tasks by using dense subgraph mining algorithms. The main advantage of the present solution is to treat the out-of-focus, noise and corruption problems in one unified framework, by introducing a theoretically new image segmentation method based on graph manipulation. This demonstrated development is however a proof of concept: how dense subgraph mining algorithms can contribute to general segmentation problems.

References

  1. Cousty, J., Bertrand, G., Najman, L., and Couprie, M. (2009). Watershed cuts: Minimum spanning forests and the drop of water principle. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:1362- 1374.
  2. Cousty, J., Bertrand, G., Najman, L., and Couprie, M. (2009). Watershed cuts: Minimum spanning forests and the drop of water principle. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:1362- 1374.
  3. Du, N., Wu, B., Pei, X., Wang, B., and Xu, L. (2007). Community detection in large-scale social networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages 16-25, New York, NY, USA. ACM.
  4. Du, N., Wu, B., Pei, X., Wang, B., and Xu, L. (2007). Community detection in large-scale social networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages 16-25, New York, NY, USA. ACM.
  5. Faloutsos, C., McCurley, K. S., and Tomkins, A. (2004). Connection subgraphs in social networks. In Proceedings of the Workshop on Link Analysis, Counterterrorism, and Privacy (in conj. with SIAM International Conference on Data Mining).
  6. Faloutsos, C., McCurley, K. S., and Tomkins, A. (2004). Connection subgraphs in social networks. In Proceedings of the Workshop on Link Analysis, Counterterrorism, and Privacy (in conj. with SIAM International Conference on Data Mining).
  7. Kim, J.-S. and Hong, K.-S. (2009). Color-texture segmentation using unsupervised graph cuts. Pattern Recogn., 42(5):735-750.
  8. Kim, J.-S. and Hong, K.-S. (2009). Color-texture segmentation using unsupervised graph cuts. Pattern Recogn., 42(5):735-750.
  9. Kovacs, L. and Sziranyi, T. (2005). Relative focus map estimation using blind deconvolution. Optics Letters, 30:3021-3023.
  10. Kovacs, L. and Sziranyi, T. (2005). Relative focus map estimation using blind deconvolution. Optics Letters, 30:3021-3023.
  11. Kovacs, L. and Sziranyi, T. (2007). Focus area extraction by blind deconvolution for defining regions of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1080-1085.
  12. Kovacs, L. and Sziranyi, T. (2007). Focus area extraction by blind deconvolution for defining regions of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1080-1085.
  13. Licsar, A., Sziranyi, T., and Czuni, L. (2010). Trainable blotch detection on high resolution archive films minimizing the human interaction. Machine Vision and Applications, 21(5):767-777.
  14. Licsar, A., Sziranyi, T., and Czuni, L. (2010). Trainable blotch detection on high resolution archive films minimizing the human interaction. Machine Vision and Applications, 21(5):767-777.
  15. Lim, S. H., Yen, J., and Wu, P. (2005). Detection of outof-focus digital photographs. Technical Report HPL 2005-14.
  16. Lim, S. H., Yen, J., and Wu, P. (2005). Detection of outof-focus digital photographs. Technical Report HPL 2005-14.
  17. Mishra, N., Ron, D., and Swaminathan, R. (2003). On finding large conjunctive clusters. In In Computational Learning Theory, volume 2777, pages 448-462.
  18. Mishra, N., Ron, D., and Swaminathan, R. (2003). On finding large conjunctive clusters. In In Computational Learning Theory, volume 2777, pages 448-462.
  19. Mishra, N., Schreiber, R., Stanton, I., and Tarjan, R. E. (2007). Clustering social networks. In WAW'07: Proceedings of the 5th international conference on Algorithms and models for the web-graph, pages 56-67, Berlin, Heidelberg. Springer-Verlag.
  20. Mishra, N., Schreiber, R., Stanton, I., and Tarjan, R. E. (2007). Clustering social networks. In WAW'07: Proceedings of the 5th international conference on Algorithms and models for the web-graph, pages 56-67, Berlin, Heidelberg. Springer-Verlag.
  21. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888-905.
  22. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888-905.
Download


Paper Citation


in Harvard Style

Keszler A., Szirányi T. and Tuza Z. (2011). GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES . In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011) ISBN 978-989-8425-46-1, pages 100-105. DOI: 10.5220/0003379401000105


in Harvard Style

Keszler A., Szirányi T. and Tuza Z. (2011). GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES . In Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011) ISBN 978-989-8425-46-1, pages 100-105. DOI: 10.5220/0003379401000105


in Bibtex Style

@conference{imagapp11,
author={Anita Keszler and Tamás Szirányi and Zsolt Tuza},
title={GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES},
booktitle={Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)},
year={2011},
pages={100-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003379401000105},
isbn={978-989-8425-46-1},
}


in Bibtex Style

@conference{imagapp11,
author={Anita Keszler and Tamás Szirányi and Zsolt Tuza},
title={GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES},
booktitle={Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)},
year={2011},
pages={100-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003379401000105},
isbn={978-989-8425-46-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)
TI - GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES
SN - 978-989-8425-46-1
AU - Keszler A.
AU - Szirányi T.
AU - Tuza Z.
PY - 2011
SP - 100
EP - 105
DO - 10.5220/0003379401000105


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IMAGAPP, (VISIGRAPP 2011)
TI - GRAPH BASED SOLUTION FOR SEGMENTATION TASKS IN CASE OF OUT-OF-FOCUS, NOISY AND CORRUPTED IMAGES
SN - 978-989-8425-46-1
AU - Keszler A.
AU - Szirányi T.
AU - Tuza Z.
PY - 2011
SP - 100
EP - 105
DO - 10.5220/0003379401000105