TERMINATION ANALYSIS OF SAFETY VERIFICATION FOR NON-LINEAR ROBUST HYBRID SYSTEMS

Zhikun She

2011

Abstract

Safety verification of hybrid systems is in general undecidable. Due to practical applications, it is sufficient to only consider robustly safe hybrid systems in which a slight perturbation is guaranteed to result in the same desired safety property. In this paper, we provide a constraint based abstraction refinement for safety verification of nonlinear hybrid systems and prove that this refinement procedure will terminate for robustly safe nonlinear hybrid systems.

References

  1. Alur, R. and Courcoubetis, C. and Halbwachs, N. and Henzinger,T. A. and Ho,P.-H. and Nicollin, X. and Olivero, A. and Sifakis, J. and Yovine, S. 1995. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138: 3-34.
  2. Damm, W. and Pinto, G. and Ratschan, S. 2007. Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. International Journal of Foundations of Computer Science (IJFCS), 18(1): 63-86.
  3. Fehnker, A. and Ivanc?ic, F. 2004. Benchmarks for hybrid systems verification. In R. Alur and G. J. Pappas, editors, HSCC'04, LNCS, Vol. 2993, Springer.
  4. Fränzle, M. 2001. What will be eventually true of polynomial hybrid automata. In N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Software (TACS 2001), LNCS, Vol. 2215, SpringerVerlag.
  5. Frehse, G. 2008. Phaver: algorithmic verification of hybrid systems past hytech. International Journal on Software Tools for Technology Transfer (STTT), 10(3): 263-279.
  6. Girard, A. and Pappas, G. 2006. Verification using simulation. In J. Hespanha and A. Tiwari, editors, HSCC'06, LNCS, Vol. 3927, pp. 272-286.
  7. Henzinger, T. A. and Kopke, P. W. and Puri, A. and Varaiya, P. 1998. What's decidable about hybrid automata. Journal of Computer and System Sciences, 57: 94- 124.
  8. Henzinger, T. A. and Raskin, J.-F. 2000. Robust undecidability of timed and hybrid systems. In N. Lynch and B. Krogh, editors, Proc. HSCC'00, LNCS, Vol. 1790, Springer.
  9. Julius, A. A. and Fainekos, G. E. and Anand, M. and Lee, I. and Pappas, G. J. 2007. Robust test generation and coverage for hybrid systems. In A. Bemporad, A. Bicchi, and G. Buttazzo, editors, Hybrid Systems: Computation and Control, LNCS, Vol. 4416, pp. 329-242, Springer.
  10. Klaedtke, F. and Ratschan, S. and She, Z. 2007. Languagebased abstraction refinement for hybrid system verification. In Proceedings of the Eighth International Conference on Verification, Model Checking and Abstraction Interpretation, LNCS, Vol. 4349, pp. 151- 166, Springer.
  11. Lafferriere, G. and Pappas, G. J. and Yovine, S. 1999. A new class of decidable hybrid systems. In HSCC, pp. 137-151.
  12. Neumaier, A. 1993. The wrapping effect, ellipsoid arithmetic, stability and confidence regions. Computing Supplementum, 9: 175-190.
  13. Preußig, J. and Kowalewski, S. and Wong-Toi, H. and Henzinger, T. 1998. An algorithm for the approximative analysis of rectangular automata. In 5th Int. School and Symp. on Formal Techniques in Fault Tolerant and Real Time Systems, LNCS, Vol. 1486, Springer.
  14. Ratschan, S. 2006. Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic, 7(4): 723-748.
  15. Ratschan, S. and She, Z. 2007a. HSOLVER. http://hsolver.sourceforge.net. Software package.
  16. Ratschan, S. and She, Z. 2005. Safety verification of hybrid systems by constraint propagation based abstraction refinement. In M. Morari and L. Thiele, editors, Hybrid Systems: Computation and Control, LNCS, Vol. 3414, pp. 573-589, Springer.
  17. Ratschan, S. and She, Z., 2006. Constraints for continuous reachability in the verification of hybrid systems. In Proc. 8th Int. Conf. on Artif. Intell. and Symb. Comp., AISC'2006, LNCS, Vol. 4120, pp. 196-210, Springer.
  18. Ratschan, S. and She, Z., 2007. Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Transactions on Embedded Computing Systems, 6(1).
  19. Ratschan, S. and She, Z., 2008. Recursive and backward reasoning in the verification on hybrid systems. In Proceedings of the Fifth International Conference on Informatics in Control, Automaton and Robotics, Vol. 4, INSTICC Press.
  20. She, Z. and Zheng, Z. 2008. Tightened reachability constraints for the verification of linear hybrid systems. Nonlinear Analysis: Hybrid Systems, 2(4): 1222- 1231.
  21. Van der Schaft, A. J. and Schumacher, J. M. 2000. An Introduction to Hybrid Dynamical Systems. Springer.
Download


Paper Citation


in Harvard Style

She Z. (2011). TERMINATION ANALYSIS OF SAFETY VERIFICATION FOR NON-LINEAR ROBUST HYBRID SYSTEMS . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 251-261. DOI: 10.5220/0003446502510261


in Bibtex Style

@conference{icinco11,
author={Zhikun She},
title={TERMINATION ANALYSIS OF SAFETY VERIFICATION FOR NON-LINEAR ROBUST HYBRID SYSTEMS},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={251-261},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003446502510261},
isbn={978-989-8425-74-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - TERMINATION ANALYSIS OF SAFETY VERIFICATION FOR NON-LINEAR ROBUST HYBRID SYSTEMS
SN - 978-989-8425-74-4
AU - She Z.
PY - 2011
SP - 251
EP - 261
DO - 10.5220/0003446502510261