ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS
Ionela Prodan, Sorin Olaru, Cristina Stoica, Silviu-Iulian Niculescu
2011
Abstract
This paper addresses the optimal control of multiple (linear) agents in the presence of a set of adversary constraints which makes the convergence towards the ”zero” relative position an infeasible task. By consequence, this fixed point of the relative dynamics is replaced by a set of fixed points with different basin of attraction or even by limit cycles. The present analysis is based on the existence of an optimum control law over a receding horizon with one step ahead constraint. The feasible explicit solution in terms of a piecewise affine control law is analyzed in order to characterize the limit behavior of an agent.
References
- Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. (2002). The Explicit Linear Quadratic Regulator for Constrained Systems. Automatica, 38(1):3-20.
- Bemporad, A., Morari, M., Dua, V., and Pistikopoulos, E. (2002). The Explicit Linear Quadratic Regulator for Constrained Systems. Automatica, 38(1):3-20.
- Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time systems. Systems & Control Letters, 11(3):243-248.
- Bitsoris, G. (1988). On the positive invariance of polyhedral sets for discrete-time systems. Systems & Control Letters, 11(3):243-248.
- Bobrow, J., Dubowsky, S., and Gibson, J. (1985). Timeoptimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3):3.
- Bobrow, J., Dubowsky, S., and Gibson, J. (1985). Timeoptimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3):3.
- Chetaev, N. (1952). On the instability of equilibrium in some cases where the force function is not maximum. Prikl. Mat. Mekh, 16(1).
- Chetaev, N. (1952). On the instability of equilibrium in some cases where the force function is not maximum. Prikl. Mat. Mekh, 16(1).
- Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. O. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36:789-814.
- Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. O. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36:789-814.
- Pannocchia, G., Wright, S., and Rawlings, J. (2003). Existence and computation of infinite horizon model predictive control with active steady-state input constraints. IEEE Transactions on Automatic Control,, 48(6):1002-1006.
- Pannocchia, G., Wright, S., and Rawlings, J. (2003). Existence and computation of infinite horizon model predictive control with active steady-state input constraints. IEEE Transactions on Automatic Control,, 48(6):1002-1006.
- Poincaré, H. and Magini, R. (1899). Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900), 10(1):128-130.
- Poincaré, H. and Magini, R. (1899). Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900), 10(1):128-130.
- Seron, M., De Dona, J., and Goodwin, G. (2002). Global analytical model predictive control with input constraints. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 1, pages 154-159, Sydney, Australia.
- Seron, M., De Dona, J., and Goodwin, G. (2002). Global analytical model predictive control with input constraints. In Proceedings of the 39th IEEE Conference on Decision and Control, volume 1, pages 154-159, Sydney, Australia.
- Shiller, Z. (2000). Obstacle traversal for space exploration. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, volume 2, pages 989-994.
- Shiller, Z. (2000). Obstacle traversal for space exploration. In Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, volume 2, pages 989-994.
Paper Citation
in Harvard Style
Prodan I., Olaru S., Stoica C. and Niculescu S. (2011). ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 344-349. DOI: 10.5220/0003535703440349
in Harvard Style
Prodan I., Olaru S., Stoica C. and Niculescu S. (2011). ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS . In Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-74-4, pages 344-349. DOI: 10.5220/0003535703440349
in Bibtex Style
@conference{icinco11,
author={Ionela Prodan and Sorin Olaru and Cristina Stoica and Silviu-Iulian Niculescu},
title={ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={344-349},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003535703440349},
isbn={978-989-8425-74-4},
}
in Bibtex Style
@conference{icinco11,
author={Ionela Prodan and Sorin Olaru and Cristina Stoica and Silviu-Iulian Niculescu},
title={ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS},
booktitle={Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2011},
pages={344-349},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003535703440349},
isbn={978-989-8425-74-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS
SN - 978-989-8425-74-4
AU - Prodan I.
AU - Olaru S.
AU - Stoica C.
AU - Niculescu S.
PY - 2011
SP - 344
EP - 349
DO - 10.5220/0003535703440349
in EndNote Style
TY - CONF
JO - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - ON THE LIMIT BEHAVIOR OF MULTI-AGENT SYSTEMS
SN - 978-989-8425-74-4
AU - Prodan I.
AU - Olaru S.
AU - Stoica C.
AU - Niculescu S.
PY - 2011
SP - 344
EP - 349
DO - 10.5220/0003535703440349