IMPROVED SURROGATE-BASED OPTIMIZATION OF A MARINE ECOSYSTEM MODEL USING RESPONSE CORRECTION

M. Prieß, S. Koziel, T. Slawig

2011

Abstract

An improved surrogate-based optimization (SBO) methodology is developed for the optimization of climate model parameters. Our technique is based upon a multiplicative response correction technique to create a surrogate from a temporarily coarser discretized physics-based low-fidelity model. The original version of this methodology was successfully applied to calibration of a (one-dimensional) representative of a class of marine ecosystem models yielding about 84% computational cost savings when compared to the high-fidelity model optimization. Here, we demonstrate that by employing relatively simple modifications of the response correction scheme, the surrogate model accuracy and the efficiency of the optimization process can be further improved. More specifically, for the considered test case, the optimization cost is reduced three times when compared to the original technique, i.e., from about 15% to only 5% of the cost of the direct high-fidelity ecosystem model optimization (used as a benchmark method). The corresponding time savings are increased to 95%.

References

  1. Bandler, J. W., Cheng, Q. S., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., and Søndergaard, J. (2004). Space mapping: The state of the art. IEEE T. Microw. Theory., 52(1).
  2. Banks, H. T. and Kunisch, K. (1989). Estimation Techniques for Distributed Parameter Systems. Birkhäuser.
  3. Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). Trustregion methods. Society for Industrial and Applied Mathematics, Philadelphia, PA.
  4. Fennel, W. and Neumann, T. (2004). Introduction to the Modelling of Marine Ecosystems. Elsevier.
  5. Forrester, A. I. and Keane, A. J. (2009). Recent advances in surrogate-based optimization. Prog. Aerosp. Sci., 45(1-3):50-79.
  6. Gill, A. E. (1982). Atmosphere - Ocean Dynamics, volume 30 of International Geophysics Series. Academic Press.
  7. Koziel, S., Bandler, J. W., and Cheng, Q. S. (2010). Robust trust-region space-mapping algorithms for microwave design optimization. IEEE T. Microw. Theory., 58(8):2166-2174.
  8. Leifsson, L. and Koziel, S. (2010). Multi-fidelity design optimization of transonic airfoils using physicsbased surrogate modeling and shape-preserving response prediction. Journal of Computational Science, 1(2):98-106.
  9. Majda, A. (2003). Introduction to PDE's and Waves for the Atmosphere and Ocean. AMS.
  10. Marchuk, G. I. (1982). Methods of Numerical Mathematics. Springer, 2nd edition.
  11. McGuffie, K. and Henderson-Sellers, A. (2005). A Climate Modelling Primer. Wiley, 3nd edition.
  12. Oschlies, A. and Garcon, V. (1999). An eddy-permitting coupled physical-biological model of the north atlantic. 1. sensitivity to advection numerics and mixed layer physics. Global Biogeochem. Cy., 13:135-160.
  13. Prieß, M., Koziel, S., and Slawig, T. (2011). Surrogatebased optimization of climate model parameters using response correction. Preprint 1104, ChristianAlbrechts-Universität zu Kiel, Institute for Computer Science.
  14. Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K. (2005). Surrogate-based analysis and optimization. Prog. Aerosp. Sci., 41(1):1-28.
  15. Rückelt, J., Sauerland, V., Slawig, T., Srivastav, A., Ward, B., and Patvardhan, C. (2010). Parameter optimization and uncertainty analysis in a model of oceanic co2-uptake using a hybrid algorithm and algorithmic differentiation. Nonlinear Analysis: Real World Applications, online.
  16. Sarmiento, J. and Gruber, N. (2006). Ocean Biogeochemical Dynamics. Princeton University Press.
  17. Simpson, T., Poplinski, J., Koch, P. N., and Allen, J. (2001). Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput., 17:129- 150. 10.1007/PL00007198.
  18. Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Stat. Comput., 14:199-222. 10.1023/B:STCO.0000035301.49549.88.
  19. Søndergaard, J. (2003). Optimization using surrogate models - by the space mapping technique. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby. Supervisor: Kaj Madsen.
  20. Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM.
Download


Paper Citation


in Harvard Style

Prieß M., Koziel S. and Slawig T. (2011). IMPROVED SURROGATE-BASED OPTIMIZATION OF A MARINE ECOSYSTEM MODEL USING RESPONSE CORRECTION . In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2011) ISBN 978-989-8425-78-2, pages 449-457. DOI: 10.5220/0003597704490457


in Bibtex Style

@conference{sddom11,
author={M. Prieß and S. Koziel and T. Slawig},
title={IMPROVED SURROGATE-BASED OPTIMIZATION OF A MARINE ECOSYSTEM MODEL USING RESPONSE CORRECTION},
booktitle={Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2011)},
year={2011},
pages={449-457},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003597704490457},
isbn={978-989-8425-78-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2011)
TI - IMPROVED SURROGATE-BASED OPTIMIZATION OF A MARINE ECOSYSTEM MODEL USING RESPONSE CORRECTION
SN - 978-989-8425-78-2
AU - Prieß M.
AU - Koziel S.
AU - Slawig T.
PY - 2011
SP - 449
EP - 457
DO - 10.5220/0003597704490457