KINETIC MORPHOGENESIS OF A MULTILAYER PERCEPTRON
Bruno Apolloni, Simone Bassis, Lorenzo Valerio
2011
Abstract
We introduce a morphogenesis paradigm for a neural network where neurons are allowed to move autonomously in a topological space to reach suitable reciprocal positions under an informative perspective. To this end, a neuron is attracted by the mates which are most informative and repelled by those which are most similar to it. We manage the neuron motion with a Newtonian dynamics in a subspace of a framework where topological coordinates match with those reckoning the neuron connection weights. As a result, we have a synergistic plasticity of the network which is ruled by an extended Lagrangian where physics components merge with the common error terms. With the focus on a multilayer perceptron, this plasticity is operated by an extension of the standard back-propagation algorithm which proves robust even in the case of deep architectures. We use two classic benchmarks to gain some insights on the morphology and plasticity we are proposing.
References
- Apolloni, B., Bassis, S., and Brega, A. (2009). Feature selection via Boolean Independent Component analysis. Information Science, 179(22):3815-3831.
- Apolloni, B., Bassis, S., Malchiodi, D., and Pedrycz, W. (2008). The Puzzle of Granular Computing, volume 138. Springer Verlag.
- Carpenter, G. A. and Grossberg, S. (2003). Adaptive resonance theory. In The Handbook of Brain Theory and Neural Networks, pages 87-90. MIT Press.
- Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep big simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207-3220.
- Corke, P. I. (1996). A robotics toolbox for Matlab. IEEE Rob. and Aut. Mag., 3(1):24-32.
- Danafar, S., Gretton, A., and Schmidhuber, J. (2010). Characteristic kernels on structured domains excel in robotics and human action recognition. In Machine Learning and Knowledge Discovery in Databases, volume 6321, pages 264-279. Springer, Berlin.
- Dirac, P. A. M. (1982). The Principles of Quantum Mechanics. Oxford University Press, USA.
- Easley, D. and Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, MA.
- Ezhov, A. and Ventura, D. (2000). Quantum neural networks. Future Directions for Intelligent Systems and Information Science 2000.
- Fermi, E. (1956). Thermodynamics. Dover Publications.
- Feynman, R., Leighton, R., and Sands, M. (1963). The Feynman Lectures on Physics, volume 3. AddisonWesley, Boston.
- Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
- Kreutz-Delgado, K. and Rao, B. D. (1998). Application of concave/Schur-concave functions to the learning of overcomplete dictionaries and sparse representations. In 32th Asilomar Conference on Signals, Systems & Computers, volume 1, pages 546-550.
- Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies for training deep neural networks. Jour. Machine Learning Research, 10:1-40.
- LeCun, Y. (1988). A theoretical framework for backpropagation. In Proc. of the 1988 Connectionist Models Summer School, pages 21-28. Morgan Kaufmann.
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324.
- Marín, O. and Lopez-Bendito, G. (2007). Neuronal migration. In Evolution of Nervous Systems: a Comprehensive Reference, chapter 1.1. Academic Press.
- Marín, O. and Rubenstein, J. L. (2003). Cell migration in the forebrain. Review in Neurosciences, 26:441-483.
- NVIDIA Corporation (2010). Nvidia Tesla c2050 and c2070 computing processors.
- Rasmussen, C. E., Neal, R. M., Hinton, G. E., van Camp, D., Revow, M., Ghaharamani, Z., Kustra, R., and Tibshirani, R. (1996). The Delve manual. Technical report, Dept. Computer Science, Univ. of Toronto, Canada. Ver. 1.1.
- Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99-127.
Paper Citation
in Harvard Style
Apolloni B., Bassis S. and Valerio L. (2011). KINETIC MORPHOGENESIS OF A MULTILAYER PERCEPTRON . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 99-105. DOI: 10.5220/0003642800990105
in Bibtex Style
@conference{ncta11,
author={Bruno Apolloni and Simone Bassis and Lorenzo Valerio},
title={KINETIC MORPHOGENESIS OF A MULTILAYER PERCEPTRON},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={99-105},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003642800990105},
isbn={978-989-8425-84-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - KINETIC MORPHOGENESIS OF A MULTILAYER PERCEPTRON
SN - 978-989-8425-84-3
AU - Apolloni B.
AU - Bassis S.
AU - Valerio L.
PY - 2011
SP - 99
EP - 105
DO - 10.5220/0003642800990105