BIO-INSPIRED BAGS-OF-FEATURES FOR IMAGE CLASSIFICATION
Wafa Bel Haj Ali, Eric Debreuve, Pierre Kornprobst, Michel Barlaud
2011
Abstract
The challenge of image classification is based on two key elements: the image representation and the algorithm of classification. In this paper, we revisited the topic of image representation. Classical descriptors such as Bag-of-Features are usually based on SIFT. We propose here an alternative based on bio-inspired features. This approach is inspired by a model of the retina which acts as an image filter to detect local contrasts. We show the promising results that we obtained in natural scenes classification with the proposed bio-inspired image representation.
References
- Bel Haj Ali, W., Piro, P., Debreuve, E., and Barlaud, M. (2010). From descriptor to boosting: Optimizing the k-nn classification rule. In Content-Based Multimedia Indexing (CBMI), 2010 International Workshop on, pages 1-5.
- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:273-297. 10.1007/ BF00994018.
- Delorme, A., Gautrais, J., van Rullen, R., and Thorpe, S. (1999). Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26-27:989-996.
- Denoeux, T. (1995). A k-nearest neighbor classification rule based on dempster-shafer theory. Systems, Man and Cybernetics, IEEE Transactions on, 25(5):804-813.
- Escobar, M.-J., Masson, G., Vieville, T., and Kornprobst, P. (2009). Action recognition using a bio-inspired feedforward spiking network. International Journal of Computer Vision, 82:284-301. 10.1007/s11263-008- 0201-1.
- Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6(4):559-601.
- Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting.
- Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In IEEE Conference on Computer Vision and Pattern Recognition, New York (NY), USA.
- Lowe, D. G. (1999). Object recognition from local scaleinvariant features. Computer Vision, IEEE International Conference on, 2:1150.
- Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42:145-175. 10.1023/A:1011139631724.
- Piro, P., Nock, R., Nielsen, F., and Barlaud, M. (2010). Boosting k-nn for categorization of natural scenes. ArXiv e-prints.
- Rodieck, R. (1965). Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research, 5(12):583-601.
- Russell, B., Torralba, A., Murphy, K., and Freeman, W. (2008). Labelme: A database and web-based tool for image annotation. International Journal of Computer Vision, 77:157-173. 10.1007/s11263-007-0090-8.
- Schapire, R. E. and Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336. 10.1023/A:1007614523901.
- Sivic, J. and Zisserman, A. (2006). Video google: Efficient visual search of videos. In Ponce, J., Hebert, M., Schmid, C., and Zisserman, A., editors, Toward Category-Level Object Recognition, volume 4170 of Lecture Notes in Computer Science, pages 127-144. Springer Berlin / Heidelberg. 10.1007/11957959 7.
- Thorpe, S. and Gautrais, J. (1998). Rank order coding. In Proceedings of the sixth annual conference on Computational neuroscience : trends in research, 1998: trends in research, 1998, CNS 7897, pages 113-118, New York, NY, USA. Plenum Press.
- Thorpe, S. J., Guyonneau, R., Guilbaud, N., Allegraud, J.- M., and VanRullen, R. (2004). Spikenet: real-time visual processing with one spike per neuron. Neurocomputing, 58-60:857-864. Computational Neuroscience: Trends in Research 2004.
- Van Rullen, R. and Thorpe, S. J. (2001). Rate coding versus temporal order coding: what the retinal ganglion cells tell the visual cortex. Neural Comput, 13(6):1255- 1283.
- Vedaldi, A. and Fulkerson, B. (2008). VLFeat: An open and portable library of computer vision algorithms. http:// www.vlfeat.org/.
Paper Citation
in Harvard Style
Bel Haj Ali W., Debreuve E., Kornprobst P. and Barlaud M. (2011). BIO-INSPIRED BAGS-OF-FEATURES FOR IMAGE CLASSIFICATION . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 269-273. DOI: 10.5220/0003663402770281
in Bibtex Style
@conference{kdir11,
author={Wafa Bel Haj Ali and Eric Debreuve and Pierre Kornprobst and Michel Barlaud},
title={BIO-INSPIRED BAGS-OF-FEATURES FOR IMAGE CLASSIFICATION},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},
year={2011},
pages={269-273},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003663402770281},
isbn={978-989-8425-79-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
TI - BIO-INSPIRED BAGS-OF-FEATURES FOR IMAGE CLASSIFICATION
SN - 978-989-8425-79-9
AU - Bel Haj Ali W.
AU - Debreuve E.
AU - Kornprobst P.
AU - Barlaud M.
PY - 2011
SP - 269
EP - 273
DO - 10.5220/0003663402770281