MULTI-REGULARIZATION PARAMETERS ESTIMATION FOR GAUSSIAN MIXTURE CLASSIFIER BASED ON MDL PRINCIPLE
Xiuling Zhou, Ping Guo, C. L. Philip Chen
2011
Abstract
Regularization is a solution to solve the problem of unstable estimation of covariance matrix with a small sample set in Gaussian classifier. And multi-regularization parameters estimation is more difficult than single parameter estimation. In this paper, KLIM_L covariance matrix estimation is derived theoretically based on MDL (minimum description length) principle for the small sample problem with high dimension. KLIM_L is a generalization of KLIM (Kullback-Leibler information measure) which considers the local difference in each dimension. Under the framework of MDL principle, multi-regularization parameters are selected by the criterion of minimization the KL divergence and estimated simply and directly by point estimation which is approximated by two-order Taylor expansion. It costs less computation time to estimate the multi-regularization parameters in KLIM_L than in RDA (regularized discriminant analysis) and in LOOC (leave-one-out covariance matrix estimate) where cross validation technique is adopted. And higher classification accuracy is achieved by the proposed KLIM_L estimator in experiment.
References
- Bishop, C. M., 2007. Pattern recognition and machine learning, Springer-Verlag New York, Inc. Secaucus, NJ, USA.
- Everitt, B. S., Hand, D., 1981. Finite Mixture Distributions, Chapman and Hall, London.
- Friedman, J. H., 1989. Regularized discriminant analysis, Journal of the American Statistical Association, vol. 84, no. 405, 165-175.
- Hoffbeck, J. P. and Landgrebe, D. A., 1996. Covariance matrix estimation and classification with limited training data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 7, 763-767.
- Schafer, J. and Strimmer, K., 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics, Statistical Applications in Genetics and Molecular Biology, vol. 4, no. 1.
- Srivastava, S., Gupta, M. R., Frigyik, B. A., 2007. Bayesian quadratic discriminant analysis, J. Mach. Learning Res. 8, 1277-1305.
- Bickel, P. J. and Levina, E., 2008. Regularized estimation of large covariance matrices, Annals of Statistics, vol. 36, no. 1, 199-227.
- Friedman, J., Hastie, T., and Tibshirani, R., 2008. Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol. 9, no. 3, 432-441.
- Cao, G., Bachega, L. R., Bouman, C. A., 2011. The Sparse Matrix Transform for Covariance Estimation and Analysis of High Dimensional Signals. IEEE Transactions on Image Processing, Volume 20, Issue 3, 625 - 640.
- Rivals, I., Personnaz, L., 1999. On cross validation for model selection, Neural Comput. 11,863-870.
- Guo, P., Jia, Y., and Lyu, M. R., 2008. A study of regularized Gaussian classifier in high-dimension small sample set case based on MDL principle with application to spectrum recognition, Pattern Recognition, Vol. 41, 28422854.
- Redner, R. A., Walker, H. F., 1984. Mixture densities, maximum likelihood and the EM algorithm, SIAM Rev. 26, 195-239.
- Aeberhard, S., Coomans, de Vel, D., O., 1994. Comparative analysis of statistical pattern recognition methods in high dimensional settings, Pattern Recognition 27 (8), 1065-1077.
- Rissanen, J., 1978. Modeling by shortest data description, Automatica 14, 465-471.
- Barron, A., Rissanen, J., Yu, B., 1998. The minimum description length principle in coding and modeling, IEEE Trans. Inform. Theory 44 (6), 2743-2760.
- Kullback, S., 1959. Information Theory and Statistics, Wiley, New York.
- Nene, S. A., Nayar, S. K. and Murase, H., 1996. Columbia Object Image library(COIL-20). Technical report CUCS-005-96.
Paper Citation
in Harvard Style
Zhou X., Guo P. and Chen C. (2011). MULTI-REGULARIZATION PARAMETERS ESTIMATION FOR GAUSSIAN MIXTURE CLASSIFIER BASED ON MDL PRINCIPLE . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 112-117. DOI: 10.5220/0003669301120117
in Bibtex Style
@conference{ncta11,
author={Xiuling Zhou and Ping Guo and C. L. Philip Chen},
title={MULTI-REGULARIZATION PARAMETERS ESTIMATION FOR GAUSSIAN MIXTURE CLASSIFIER BASED ON MDL PRINCIPLE},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={112-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003669301120117},
isbn={978-989-8425-84-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - MULTI-REGULARIZATION PARAMETERS ESTIMATION FOR GAUSSIAN MIXTURE CLASSIFIER BASED ON MDL PRINCIPLE
SN - 978-989-8425-84-3
AU - Zhou X.
AU - Guo P.
AU - Chen C.
PY - 2011
SP - 112
EP - 117
DO - 10.5220/0003669301120117