A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART II - Evaluation in a Clinical Setting

A. Sant'Anna, N. Wickström, H. Eklund, R. Tranberg

2012

Abstract

The gold standard for gait analysis, in-lab 3D motion capture, is not routinely used for clinical assessment due to limitations in availability, cost and required training. Inexpensive alternatives to quantitative gait analysis are needed to increase the its adoption. Inertial sensors such as accelerometers and gyroscopes are promising tools for the development of wearable gait analysis (WGA) systems. The present study evaluates the use of a WGA system on hip-arthroplasty patients in a real clinical setting. The system provides information about gait symmetry and normality. Results show that the normality measurements are well correlated with various quantitative and qualitative measures of recovery and health status.

References

  1. Allum, J. H. J. and Carpenter, M. G. (2005). A speedy solution for balance and gait analysis: angular velocity measured at the centre of body mass. Current Opinion in Neurology, 18(1):15-21.
  2. Aminian, K., Rezakhanlou, K., De Andres, E., Fritsch, C., Leyvraz, P. F., and Robert, P. (1999). Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Medical and Biological Engineering and Computing, 37:686-691.
  3. Lateur, B. J. (1996). Evidence for a non-linear relationship between leg strength and gait speed. Age and Ageing, 25(5):386-391.
  4. Cesari, M., Kritchevsky, S. B., Penninx, B. W. H. J., Nicklas, B. J., Simonsick, E. M., Newman, A. B., Tylavsky, F. A., Brach, J. S., Satterfield, S., Bauer, D. C., Visser, M., Rubin, S. M., Harris, T. B., and Pahor, M. (2005). Prognostic value of usual gait speed in wellfunctioning older people - results from the health, aging and body composition study. Journal of the American Geriatrics Society, 53(10):1675-1680.
  5. Chang, F. M., Rhodes, J. T., Flynn, K. M., and Carollo, J. J. (2010). The role of gait analysis in treating gait abnormalities in cerebral palsy. Orthopedic Clinics of North America, 41(4):489 - 506.
  6. Coutts, F. (1999). Gait analysis in the therapeutic environment. Manual Therapy, 4(1):2 - 10.
  7. Cruz, T. H. and Dhaher, Y. Y. (2008). Evidence of abnormal lower-limb torque coupling after stroke: An isometric study supplemental materials and methods. Stroke, 39(1):139-147.
  8. Dean, C. M., Richards, C. L., and Malouin, F. (2001). Walking speed over 10 metres overestimates locomotor capacity after stroke. Clinical Rehabilitation, 15(4):415-421.
  9. Dejnabadi, H., Jolles, B., and Aminian, K. (2005). A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Transactions on Biomedical Engineering, 52(8):1478 -1484.
  10. DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3):837-845.
  11. DeLuca, P. A., Davis, R. B., O˜ unpuu, S., Rose, S., and Sirkin, R. (1997). Alterations in surgical decision making in patients with cerebral palsy based on threedimensional gait analysis. Journal of Pediatric Orthopaedics, 17(5):608-614.
  12. Dickens, W. E. and Smith, M. F. (2006). Validation of a visual gait assessment scale for children with hemiplegic cerebral palsy. Gait & Posture, 23(1):78-82.
  13. Embrey, D. G., Yates, L., and Mott, D. H. (1990). Effects of neuro-developmental treatment and orthoses on knee flexion during gait: A single-subject design. Physical Therapy, 70(10):626-637.
  14. Frenkel-Toledo, S., Giladi, N., Peretz, C., Herman, T., Gruendlinger, L., and Hausdorff, J. (2005). Effect of gait speed on gait rhythmicity in Parkinson's disease: variability of stride time and swing time respond differently. Journal of NeuroEngineering and Rehabilitation, 2(1):23.
  15. Gouwanda, D. and Senanayake, A. S. M. N. (2011). Identifying gait asymmetry using gyroscopes-a crosscorrelation and normalized symmetry index approach. Journal of Biomechanics, 44(5):972 - 978.
  16. Hausdorff, J. and Ladin, Z. amd Wei, J. (1995). Footswitch system for measurement of the temporal parameters of gait. Journal of Biomechanics, 28(3):347-351.
  17. Kawamura, C. M., Filho, M. C. M., Barreto, M. M., Asa, S. K. P., Juliano, Y., and Novo, N. F. (2007). Comparison between visual and three-dimensional gait analysis in patients with spastic diplegic cerebral palsy. Gait & Posture, 25(1):18-24.
  18. Kempen, J., de Groot, V., Knol, D., Polman, C., Lankhorst, G., and Beckerman, H. (2011). Community walking can be assessed using a 10 metre timed walk test. Multiple Sclerosis Journal.
  19. Kennedy, D., Stratford, P., Wessel, J., Gollish, J., and Penney, D. (2005). Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty. BMC Musculoskeletal Disorders, 6(1):3.
  20. Koman, L., Mooney, J., Smith, B., Goodman, A., and Mulvaney, T. (1993). Management of cerebral palsy with botulinum-A toxin: preliminary investigation. Journal of pediatric orthopedics, 13(4):489-95.
  21. Kristensen, M. T., Foss, N. B., and Kehlet, H. (2007). Timed “up & go” test as a predictor of falls within 6 months after hip fracture surgery. Physical Therapy, 87(1):24-30.
  22. Lofterød, B. and Terjesen, T. (2008). Results of treatment when orthopaedic surgeons follow gait-analysis recommendations in children with cp. Developmental Medicine & Child Neurology, 50(7):503-509.
  23. Maathuis, K. G. B., van der Schans, C. P., van Iperen, A., Rietman, H. S., and Geertzen, J. H. B. (2005). Gait in children with cerebral palsy: Observer reliability of physician rating scale and edinburgh visual gait analysis interval testing scale. Journal of Pediatric Orthopaedics, 25(3).
  24. Macnicol, M., McHardy, R., and Chalmers, J. (1980). Exercise testing before and after hip arthroplasty. Journal of Bone and Joint Surgery - British Volume, 62- B(3):326-331.
  25. Mayagoitia, R., Lö tters, J., Veltink, P., and Hermens, H. (2002a). Standing balance evaluation using a triaxial accelerometer. Gait & Posture, 16(1):55-59.
  26. Mayagoitia, R., Nene, A. V., and Veltink, P. H. (2002b). Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. Journal of Biomechanics, 35(4):537-542.
  27. McGraw, K. O. and Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1:30-46.
  28. Mercer, J. A., Devita, P., Derrick, T. R., and Bates, B. T. (2003). Individual effects of stride length and frequency on shock attenuation during running. Medicine & Science in Sports & Exercise, 35(2):307- 313.
  29. Moe-Nilssen, R. and Helbostad, J. L. (2004). Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics, 37(1):121 - 126.
  30. Morais Filho, M. C., Yoshida, R., Carvalho, W. S., Stein, H. E., and Novo, N. F. (2008). Are the recommendations from three-dimensional gait analysis associated with better postoperative outcomes in patients with cerebral palsy? Gait & Posture, 28(2):316-322.
  31. Nordin, E., Lindelf, N., Rosendahl, E., Jensen, J., and Lundin-Olsson, L. (2008). Prognostic validity of the timed up-and-go test, a modified get-up-and-go test, staff's global judgement and fall history in evaluating fall risk in residential care facilities. Age and Ageing, 37(4):442-448.
  32. Ong, A., Hillman, S., and Robb, J. (2008). Reliability and validity of the edinburgh visual gait score for cerebral palsy when used by inexperienced observers. Gait & Posture, 28(2):323-326.
  33. Palombaro, K. M., Craik, R. L., Mangione, K. K., and Tomlinson, J. D. (2006). Determining meaningful changes in gait speed after hip fracture. Physical Therapy, 86(6):809-816.
  34. Potter, J. M., Evans, A. L., and Duncan, G. (1995). Gait speed and activities of daily living function in geriatric patients. Archives of Physical Medicine and Rehabilitation, 76(11):997 - 999.
  35. Read, H. S., Hazlewood, M. E., Hillman, S. J., Prescott, R. J., and Robb, J. E. (2003). Edinburgh visual gait score for use in cerebral palsy. Journal of Pediatric Orthopaedics, 23(3):296-301.
  36. Russell, E., Braun, B., and Hamill, J. (2010). Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women? Clinical Biomechanics, 25(5):438-443.
  37. Sabatini, A. M., Martelloni, C., S., S., and F., C. (2005). Assessment of walking features from foot inertial sensing. IEEE Transactions on Biomedical Engineering, 52(3):486-494.
  38. Salarian, A., Russmann, H., Vingerhoets, F., Dehollain, C., Blanc, Y., Burkhard, P., and Aminian, K. (2004). Gait assessment in Parkinson's disease: Toward an ambulatory system for long-term monitoring. IEEE Transactions on Biomedical Engineering, 51(8):1434 -1443.
  39. Saremi, K., Marehbian, J., Yan, X., Regnaux, J.-P., Elashoff, R., Bussel, B., and Dobkin, B. H. (2006). Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabilitation and Neural Repair, 20(2):297-305.
  40. Senden, R., Grimm, B., Heyligers, I., Savelberg, H., and Meijer, K. (2009). Acceleration-based gait test for healthy subjects: Reliability and reference data. Gait & Posture, 30(2):192 - 196.
  41. Silver, K., Macko, R., Forrester, L., Goldberg, A., and Smith, G. (2000). Effects of aerobic treadmill training on gait velocity, cadence, and gait symmetry in chronic hemiparetic stroke: A preliminary report. Neurorehabilitation and Neural Repair, 14(1):65-71.
  42. Simon, S. R. (2004). Quantification of human motion: gait analysis - benefits and limitations to its application to clinical problems. Journal of Biomechanics, 37:1869- 1880.
  43. Toro, B., Nester, C., and Farren, P. (2003). A review of observational gait assessment in clinical practice. Physiotherapy Theory and Practice, 19(3):137-149.
  44. Wren, T. A. L., Rethlefsen, S. A., Healy, B. S., Do, K. P., Dennis, S. W., and Kay, R. M. (2005). Reliability and validity of visual assessments of gait using a modified physician rating scale for crouch and foot contact. Journal of Pediatric Orthopaedics, 25(5):646-650.
Download


Paper Citation


in Harvard Style

Sant'Anna A., Wickström N., Eklund H. and Tranberg R. (2012). A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART II - Evaluation in a Clinical Setting . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 5-14. DOI: 10.5220/0003707700050014


in Bibtex Style

@conference{biosignals12,
author={A. Sant'Anna and N. Wickström and H. Eklund and R. Tranberg},
title={A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART II - Evaluation in a Clinical Setting},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},
year={2012},
pages={5-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003707700050014},
isbn={978-989-8425-89-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
TI - A WEARABLE GAIT ANALYSIS SYSTEM USING INERTIAL SENSORS PART II - Evaluation in a Clinical Setting
SN - 978-989-8425-89-8
AU - Sant'Anna A.
AU - Wickström N.
AU - Eklund H.
AU - Tranberg R.
PY - 2012
SP - 5
EP - 14
DO - 10.5220/0003707700050014