SEMI-LOCAL FEATURES FOR THE CLASSIFICATION OF SEGMENTED OBJECTS

Robert Sorschag

2012

Abstract

Image features are usually extracted globally from whole images or locally from regions-of-interest. We propose different approaches to extract semi-local features from segmented objects in the context of object detection. The focus lies on the transformation of arbitrarily shaped object segments to image regions that are suitable for the extraction of features like SIFT, Gabor wavelets, and MPEG-7 color features. In this region transformation step, decisions arise about the used region boundary size and about modifications of the object and its background. Amongst others, we compare uniformly colored, blurred and randomly sampled backgrounds versus simple bounding boxes without object-background modifications. An extensive evaluation on the Pascal VOC 2010 segmentation dataset indicates that semi-local features are suitable for this task and that a significant difference exists between different feature extraction methods.

References

  1. Carreira, J., Sminchisescu, C., 2010. Constrained parametric min cuts for automatic object segmentation. CVPR.
  2. Comaniciu, D., Meer, P., 2002. Mean shift: A robust approach toward feature space analysis. PAMI.
  3. Csurka, G., Perronnin, F., 2010. An efficient approach to semantic segmentation. IJCV.
  4. Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. CVPR.
  5. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A., 2010. The PASCAL Visual Object Classes (VOC) challenge. IJCV.
  6. Frigo, M., Johnson, S., 2005. The design and implementtation of FFTW3. Proc. Program Generation, Optimization, and Platform Adaptation
  7. Hoiem, D., Efros, A., Hebert, M., 2005. Geometric context from a single image. ICCV.
  8. Hoiem, D., Stein, A., Efros, A., Hebert, M., 2011. Recovering occlusion boundaries. IJCV.
  9. Lampert, C., Blaschko, M., Hofmann, T., 2008. Beyond sliding windows: Object localization by efficient subwindow search. CVPR.
  10. Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR.
  11. Leibe, B., Leonardis, A., Schiele, B., 2008. Robust object detection with interleaved categorization and segmentation. IJCV.
  12. Li, F., Carreira, J., Sminchisescu, C., 2007. Object recognition as ranking holistic figure-ground hypotheses. CVPR.
  13. Liu, H., Song, D., RĂ¼ger, S., Hu, S., Uren, V., 2008. Comparing dissimilarity measures for content-based image retrieval. AIRS.
  14. Lowe, D., 2004. Distinctive Image Features from ScaleInvariant Keypoints. IJCV.
  15. Manjunath, B., Ohm, J.-R., Vasudevan, V., Yamada, A., 2001. Color and texture descriptors. Trans. on Circuits and Systems for Video Technology.
  16. Mikolajczyk K., Schmid, C., 2005a. A performance evaluation of local descriptors. Trans. PAMI.
  17. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., 2005b. A comparison of affine region detectors. IJCV.
  18. Oliva, A., Torralba, A., 2006. Building the GIST of a Scene: The Role of Global Image Features in Recognition, Visual Perception, Progress in Brain Research.
  19. Pantofaru, C., Schmid C., Hebert, M., 2008. Object recognition by integrating multiple image segmentations. ECCV.
  20. Rabinovich A., Vedaldi, A., Belongie, S., 2007. Does image segmentation improve object categorization? Tech. Rep. CS2007-090.
  21. Russell, B., Freeman, W., Efros, A., Sivic, J., Zisserman, A., 2006. Using multiple segmentations to discover objects and their extent in image collections. CVPR.
  22. Shi, J., Malik, J., 1997. Normalized cuts and image segmentation. CVPR.
  23. Toshev, A., Taskar, B., Daniilidis, K, 2010. Object detection via boundary structure segmentation. CVPR.
  24. Van de Sande, K., Gevers, T., Snoek, C., 2010. Evaluating color descriptors for object and scene recognition. PAMI.
Download


Paper Citation


in Harvard Style

Sorschag R. (2012). SEMI-LOCAL FEATURES FOR THE CLASSIFICATION OF SEGMENTED OBJECTS . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8425-98-0, pages 170-175. DOI: 10.5220/0003712301700175


in Bibtex Style

@conference{icpram12,
author={Robert Sorschag},
title={SEMI-LOCAL FEATURES FOR THE CLASSIFICATION OF SEGMENTED OBJECTS},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2012},
pages={170-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003712301700175},
isbn={978-989-8425-98-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - SEMI-LOCAL FEATURES FOR THE CLASSIFICATION OF SEGMENTED OBJECTS
SN - 978-989-8425-98-0
AU - Sorschag R.
PY - 2012
SP - 170
EP - 175
DO - 10.5220/0003712301700175