A HEART RATE PREDICTION MODEL FOR THE TELEREHABILITATION TRAINING OF CARDIOPULMONARY PATIENTS
Axel Helmer, Riana Deparade, Friedrich Kretschmer, Okko Lohmann, Andreas Hein, Michael Marschollek, Uwe Tegtbur
2012
Abstract
Chronic obstructive pulmonary disease (COPD) and coronary artery disease are severe diseases with increasing prevalence. They cause dyspnoea, physical inactivity, skeletal muscle atrophy and are associated with high costs in health systems worldwide. Physical training has many positive effects on the health state and quality of life of these patients. Heart Rate (HR) is an important parameter that helps physicians and (tele-) rehabilitation systems to assess and control exercise training intensity and to ensure the patients’ safety during the training. On the basis of 668 training sessions (325 F, 343 M), demographic information and weather data, we created a model that predicts the training HR for these patients. To allow prediction in different use cases, we designed five application scenarios. We used a stepwise regression to build a linear model and performed a cross validation on the resulting model. The results show that age, load, gender and former HR values are important predictors, whereas weather data and blood pressure just have minor influence. The prediction accuracy varies with a median root mean square error (RMSE) of ≈11 in scenario one up to ≈3.2 in scenario four and should therefore be precise enough for the application scenarios mentioned above.
References
- Achten, J., Jeukendrup, A. E., 2003. Heart rate monitoring: applications and limitations. Sports Med, 33(7):517-538.
- Borg, G., 1970. Perceived exertion as an indicator of somatic stress. Scandinavian journal of Rehabilitation Medicine, 2(2):92-98.
- Cheng, T. M., Savkin, A. V., Celler, B. G., Su, S. W., Wang, L., 2008. Nonlinear modeling and control of human heart rate response during exercise with various work load intensities. IEEE J BME, 55(11):2499-2508.
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L., 2006. Multivariate data analysis. Pearson/Prentice Hall, Upper Saddle River, NJ, 6. ed. edition. ISBN 0-13-032929-0.
- Helmer, A., Song, B., Ludwig, W., Schulze, M., Eichelberg, M., Hein, A., Tegtbur, U., Kayser, R., Haux, R., Marschollek, M., 2010. A sensor-enhanced health information system to support automatically controlled exercise training of COPD patients. In Pervasive Computing Technologies for Healthcare (Pervasive Health), 2010 4th International Conference on, pages 1 - 6.
- Lipprandt, M., Eichelberg, M., Thronicke, W., Kruger, J., Druke, I., Willemsen, D., Busch, C., Fiehe, C., Zeeb, E., Hein, A., 2009. OSAMI-D: An open service platform for healthcare monitoring applications. In Proc. 2nd Conference on Human System Interactions HSI 7809, pages 139-145.
- Lung, N. H. Institute, 2009. Morbidity & Mortality: 2009 Chart book on Cardiovascular Lung and Blood Diseases. U.S. Department of Health and Human Services National Institutes of Health.
- Mazenc, F., Malisoff, M., de Queiroz, M., 2010. Modelbased nonlinear control of the human heart rate during treadmill exercising. In Proc. 49th IEEE Conference Decision and Control (CDC), pages 1674-1678.
- Rodriguez-Roisin, R., Vestbo, J., 2009. Global Strategy For The Diagnosis, Management, and Prevention Of Chronic Obstructive Pulmonary Disease. Report.
- Simon, P., Schwartzstein, R., Weiss, J., Fencl, V., Tegtsoonian, M., 1990. Distinguishable types of dyspnea in patients with shortness of breath. Am Rev Respir Dis, 142(5):1009-14.
- Song, B., Wolf, K., Gietzelt, M., Al Scharaa, O., Tegtbur, U., Haux, R., Marschollek, M., 2010. Decision support for teletraining of copd patients. Methods Inf Med., 49(1):96-102.
- Su, S. W., Wang, L., Celler, B. G., Savkin, A. V., Guo, Y., 2006. Modelling and control for heart rate regulation during treadmill exercise. In Proc. 28th Annual Int. Conference of the IEEE Engineering in Medicine and Biology Society EMBS 7806, pages 4299-4302.
- Velikic, G., Modayil, J., Thomsen, M., Bocko, M., Pentland, A., 2010. Predicting heart rate from activity using linear and non-linear models. In Proceedings of 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services.
Paper Citation
in Harvard Style
Helmer A., Deparade R., Kretschmer F., Lohmann O., Hein A., Marschollek M. and Tegtbur U. (2012). A HEART RATE PREDICTION MODEL FOR THE TELEREHABILITATION TRAINING OF CARDIOPULMONARY PATIENTS . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 30-36. DOI: 10.5220/0003713800300036
in Bibtex Style
@conference{healthinf12,
author={Axel Helmer and Riana Deparade and Friedrich Kretschmer and Okko Lohmann and Andreas Hein and Michael Marschollek and Uwe Tegtbur},
title={A HEART RATE PREDICTION MODEL FOR THE TELEREHABILITATION TRAINING OF CARDIOPULMONARY PATIENTS},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)},
year={2012},
pages={30-36},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003713800300036},
isbn={978-989-8425-88-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)
TI - A HEART RATE PREDICTION MODEL FOR THE TELEREHABILITATION TRAINING OF CARDIOPULMONARY PATIENTS
SN - 978-989-8425-88-1
AU - Helmer A.
AU - Deparade R.
AU - Kretschmer F.
AU - Lohmann O.
AU - Hein A.
AU - Marschollek M.
AU - Tegtbur U.
PY - 2012
SP - 30
EP - 36
DO - 10.5220/0003713800300036