DECISION TREE INDUCTION FROM COUNTEREXAMPLES
Nicolas Cebron, Fabian Richter, Rainer Lienhart
2012
Abstract
While it is well accepted in human learning to learn from counterexamples or mistakes, classic machine learning algorithms still focus only on correctly labeled training examples.We replace this rigid paradigm by using complementary probabilities to describe the probability that a certain class does not occur. Based on the complementary probabilities, we design a decision tree algorithm that learns from counterexamples. In a classification problem with K classes, K 1 counterexamples correspond to one correctly labeled training example. We demonstrate that even when only a partial amount of counterexamples is available, we can still obtain good performance.
References
- Ashwin, T., Jain, N., and Ghosal, S. (2001). Improving image retrieval performance with negative relevance feedback. Acoustics, Speech, and Signal Processing, IEEE International Conference on, 3:1637-1640.
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The weka data mining software: an update. SIGKDD Explor. Newsl., 11:10- 18.
- Joshi, A. J., Porikli, F., and Papanikolopoulos, N. (2010). Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback. In CVPR, pages 2995-3002. IEEE.
- Mueller, H., Mueller, W., Squire, D. M., Marchand-Maillet, S., and Pun, T. (2000). Strategies for positive and negative relevance feedback in image retrieval. In Proceedings of the International Conference on Pattern Recognition - Volume 1, volume 1, pages 1043-1046, Washington, DC, USA. IEEE Computer Society.
- Podgorelec, V., Kokol, P., Stiglic, B., and Rozman, I. (2002). Decision trees: An overview and their use in medicine. J. Med. Syst., 26:445-463.
- Shannon, C. E. (2001). A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev., 5(1):3-55.
- Tsoumakas, G. and Katakis, I. (2007). Multi label classification: An overview. International Journal of Data Warehouse and Mining, 3(3):1-13.
- Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., and Vlahavas, I. (2011). Mulan: A java library for multilabel learning. Journal of Machine Learning Research. (to appear).
Paper Citation
in Harvard Style
Cebron N., Richter F. and Lienhart R. (2012). DECISION TREE INDUCTION FROM COUNTEREXAMPLES . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 525-528. DOI: 10.5220/0003730405250528
in Bibtex Style
@conference{icpram12,
author={Nicolas Cebron and Fabian Richter and Rainer Lienhart},
title={DECISION TREE INDUCTION FROM COUNTEREXAMPLES},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={525-528},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003730405250528},
isbn={978-989-8425-99-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - DECISION TREE INDUCTION FROM COUNTEREXAMPLES
SN - 978-989-8425-99-7
AU - Cebron N.
AU - Richter F.
AU - Lienhart R.
PY - 2012
SP - 525
EP - 528
DO - 10.5220/0003730405250528