CLASSIFICATION OF 3D URBAN SCENES - A Voxel based Approach
Ahmad Kamal Aijazi, Paul Checchin, Laurent Trassoudaine
2012
Abstract
In this paper we present a method to classify urban scenes based on a super-voxel segmentation of sparse 3D data. The 3D point cloud is first segmented into voxels, which are then joined together by using a link-chain method rather than the usual region growing algorithm to create objects. These objects are then classified using geometrical models and local descriptors. In order to evaluate our results a new metric is presented, which combines both segmentation and classification results simultaneously. The effects of voxel size and incorporation of RGB color and intensity on the classification results are also discussed.
References
- Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., and Ng, A. (2005). Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, volume 2, pages 169-176, Los Alamitos, CA, USA. IEEE Computer Society.
- Douillard, B., Brooks, A., and Ramos, F. (2009). A 3D Laser and Vision Based Classifier. In 5th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), page 6, Melbourne, Australia.
- Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., and Frenkel, A. (2011). On the Segmentation of 3D LIDAR Point Clouds. In IEEE Int. Conf. on Robotics and Automation (ICRA), page 8, Shanghai, China.
- Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer Vision, 59:167-181. 10.1023/B:VISI.0000022288.19776.77.
- Golovinskiy, A. and Funkhouser, T. (2009). Min-Cut Based Segmentation of Point Clouds. In IEEE Workshop on Search in 3D and Video (S3DV) at ICCV, pages 39 - 46.
- Halma, A., ter Haar, F., Bovenkamp, E., Eendebak, P., and van Eekeren, A. (2010). Single spin image-ICP matching for efficient 3D object recognition. In Proceedings of the ACM workshop on 3D object retrieval, 3DOR 7810, pages 21-26, New York, NY, USA.
- Johnson, A. (1997). Spin-Images: A Representation for 3- D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.
- Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003). Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, SGP 7803, pages 156-164, Airela-Ville, Switzerland, Switzerland. Eurographics Association.
- Klasing, K., Althoff, D., Wollherr, D., and Buss, M. (2009). Comparison of Surface Normal Estimation Methods for Range Sensing Applications. In IEEE Int. Conf. on Robotics and Automation, pages 3206 - 3211, Kobe, Japan.
- Knopp, J., Prasad, M., and Gool, L. V. (2010). Orientation invariant 3D object classification using hough transform based methods. In Proceedings of the ACM workshop on 3D object retrieval, 3DOR 7810, pages 15-20, New York, NY, USA. ACM.
- Lam, J., Kusevic, K., Mrstik, P., Harrap, R., and Greenspan, M. (2010). Urban Scene Extraction from Mobile Ground Based LiDAR Data. In International Symposium on 3D Data Processing Visualization and Transmission, page 8, Paris, France.
- Lim, E. and Suter, D. (2007). Conditional Random Field for 3D Point Clouds with Adaptive Data Reduction. In International Conference on Cyberworlds, pages 404-408, Hannover.
- Lim, E. H. and Suter, D. (2008). Multi-scale Conditional Random Fields for Over-Segmented Irregular 3D Point Clouds Classification. In Computer Vision and Pattern Recognition Workshop, volume 0, pages 1-7, Anchorage, AK, USA. IEEE Computer Society.
- Liu, Y., Zha, H., and Qin, H. (2006). Shape Topics-A Compact Representation and New Algorithms for 3D Partial Shape Retrieval. In IEEE Conf. on Computer Vision and Pattern Recognition, volume 2, pages 2025- 2032, New York, NY, USA. IEEE Computer Society.
- Lu, W. L., Okuma, K., and Little, J. J. (2009). A Hybrid Conditional Random Field for Estimating the Underlying Ground Surface from Airborne LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 47(8):2913-2922.
- Moosmann, F., Pink, O., and Stiller, C. (2009). Segmentation of 3D Lidar Data in non-flat Urban Environments using a Local Convexity Criterion. In Proc. of the IEEE Intelligent Vehicles Symposium (IV), pages 215-220, Nashville, Tennessee, USA.
- Munoz, D., Vandapel, N., and Hebert, M. (2009). Onboard contextual classification of 3-D point clouds with learned high-order Markov Random Fields. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 2009 - 2016, Kobe, Japan.
- Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). Shape distributions. ACM Trans. Graph., 21:807-832.
- Pauling, F., Bosse, M., and Zlot, R. (2009). Automatic Segmentation of 3D Laser Point Clouds by Ellipsoidal Region Growing. In Australasian Conference on Robotics & Automation, page 10, Sydney, Australia.
- Pu, S. and Vosselman, G. (2009). Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images. Sensors, 9(6):4525-4542.
- Rusu, R., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram. In IEEE/RSJ Int. Conf. on Intellig. Robots and Systems (IROS), pages 2155 - 2162, Taipei, Taiwan.
- Schoenberg, J., Nathan, A., and Campbell, M. (2010). Segmentation of dense range information in complex urban scenes. In IEEE/RSJ Int. Conf. on Intellig. Robots and Systems (IROS), pages 2033 - 2038, Taipei, Taiwan.
- Sithole, G. and Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2):85 - 101. Advanced Techniques for Analysis of Geo-spatial Data.
- Strom, J., Richardson, A., and Olson, E. (2010). Graphbased Segmentation for Colored 3D Laser Point Clouds. In Proceedings of the IEEE/RSJ Int. Conf. on Intellig. Robots and Systems (IROS), pages 2131 - 2136.
- Sun, J., Ovsjanikov, M., and Guibas, L. (2009). A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. In Proceedings of the Symposium on Geometry Processing, pages 1383-1392, Aire-la-Ville, Switzerland. Eurographics Association.
- Triebel, R., Shin, J., and Siegwart, R. (2010). Segmentation and Unsupervised Part-based Discovery of Repetitive Objects. In Proceedings of Robotics: Science and Systems, page 8, Zaragoza, Spain.
- Verma, V., Kumar, R., and Hsu, S. (2006). 3D building detection and modeling from aerial lidar data. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, volume 2, pages 2213-2220, New York, USA. IEEE Computer Society.
- Vieira, M. and Shimada, K. (2005). Surface mesh segmentation and smooth surface extraction through region growing. Computer Aided Geometric Design, 22(8):771 - 792.
- Vosselman, G., Kessels, P., and Gorte, B. (2005). The utilisation of airborne laser scanning for mapping. International Journal of Applied Earth Observation and Geoinformation, 6(3-4):177 - 186. Data Quality in Earth Observation Techniques.
- Zhu, X., Zhao, H., Liu, Y., Zhao, Y., and Zha, H. (2010). Segmentation and classification of range im-
Paper Citation
in Harvard Style
Aijazi A., Checchin P. and Trassoudaine L. (2012). CLASSIFICATION OF 3D URBAN SCENES - A Voxel based Approach . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 61-70. DOI: 10.5220/0003733100610070
in Bibtex Style
@conference{icpram12,
author={Ahmad Kamal Aijazi and Paul Checchin and Laurent Trassoudaine},
title={CLASSIFICATION OF 3D URBAN SCENES - A Voxel based Approach},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={61-70},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003733100610070},
isbn={978-989-8425-99-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - CLASSIFICATION OF 3D URBAN SCENES - A Voxel based Approach
SN - 978-989-8425-99-7
AU - Aijazi A.
AU - Checchin P.
AU - Trassoudaine L.
PY - 2012
SP - 61
EP - 70
DO - 10.5220/0003733100610070