AUTOMATIC VIDEO DETECTION OF NOCTURNAL EPILEPTIC MOVEMENT BASED ON MOTION TRACKS
Kris Cuppens, Bert Bonroy, Anouk Van de Vel, Berten Ceulemans, Lieven Lagae, Tinne Tuytelaars, Sabine Van Huffel, Bart Vanrumste
2012
Abstract
Epileptic seizure detection in a home situation is often not feasible due to the complicated attachment of the EEG-electrodes on the scalp. We propose to detect nocturnal seizures with a motor component in patients by means of a single video camera. To this end we use a combination of optical flow and mean shift clustering to register moving body parts. After extraction of seven features, related to amplitude, duration and direction of the motion, we carry out a first validation with a linear support vector machine classifier. This resulted in a sensitivity of 80.60% and a positive predictive value of 62.07%.
References
- Karayiannis N. B., Xiong Y., Tao G., Frost J. D. Jr., Wise M. S., Hrachovy R. A. and Mizrahi E. M., Automated detection of videotaped neonatal seizures of epileptic origin. Epilepsia, vol. 47, pp. 966-980, 2006.
- Min J. H., Kasturi R. and Camps O., Extraction and temporal segmentation of multiple motion trajectories in human motion. Image and Vision Computing, vol. 26, pp. 1621-1635, 2008.
- Crocker J. C. and Grier D. G., Methods of digital video microscopy for colloidal studies. Journal of Colloid and Interface Science, vol. 179, pp. 298-310, 1996.
- Yilmaz A., Javed O. and Shah M., Object tracking: A survey. Acm Computing Surveys, vol. 38, 2006.
- Horn B. K. P. and Schunck B. G., Determining OpticalFlow. Artificial Intelligence, vol. 17, pp. 185-203, 1981.
- Cuppens K., Lagae L., Ceulemans B., Van Huffel S. and Vanrumste B., Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy. Medical & biological engineering & computing, vol. 48, N° 9, pp. 923-931, 2010.
- Cheng Y. Z., Mean Shift, Mode Seeking, And Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 790-799, 1995.
- Fukunaga K. and Hostetler L. D., Estimation Of Gradient Of A Density-Function, With Applications In PatternRecognotion. IEEE Transactions on Information Theory, vol. 21, pp. 32-40, 1975.
- Hu W. M., Tan T. N., Wang L., Maybank S., A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, vol. 34, pp. 334- 352, 2004.
- Turaga P., Chellappa R., Subrahmanian V. S., Udrea O., Machine Recognition of Human Activities: A Survey. IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, pp. 1473-1488, 2008.
Paper Citation
in Harvard Style
Cuppens K., Bonroy B., Van de Vel A., Ceulemans B., Lagae L., Tuytelaars T., Van Huffel S. and Vanrumste B. (2012). AUTOMATIC VIDEO DETECTION OF NOCTURNAL EPILEPTIC MOVEMENT BASED ON MOTION TRACKS . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012) ISBN 978-989-8425-89-8, pages 342-345. DOI: 10.5220/0003742903420345
in Bibtex Style
@conference{biosignals12,
author={Kris Cuppens and Bert Bonroy and Anouk Van de Vel and Berten Ceulemans and Lieven Lagae and Tinne Tuytelaars and Sabine Van Huffel and Bart Vanrumste},
title={AUTOMATIC VIDEO DETECTION OF NOCTURNAL EPILEPTIC MOVEMENT BASED ON MOTION TRACKS},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)},
year={2012},
pages={342-345},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003742903420345},
isbn={978-989-8425-89-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2012)
TI - AUTOMATIC VIDEO DETECTION OF NOCTURNAL EPILEPTIC MOVEMENT BASED ON MOTION TRACKS
SN - 978-989-8425-89-8
AU - Cuppens K.
AU - Bonroy B.
AU - Van de Vel A.
AU - Ceulemans B.
AU - Lagae L.
AU - Tuytelaars T.
AU - Van Huffel S.
AU - Vanrumste B.
PY - 2012
SP - 342
EP - 345
DO - 10.5220/0003742903420345