FoF1-ATPase STATOR REGULATION STUDIED WITH A RESONANCE MODEL
Yao-Gen Shu, Zhong-Can Ou-Yang
2012
Abstract
The FoF1-ATPase activity was regulated through external links on the exposed stator. The regulation tendency of synthesis was the same with that of hydrolysis. A resonance model has been proposed to illustrate these regulation phenomena. The novel model not only has deepened our understanding of the “binding change mechanism”, but also was very useful to develop the rotary motor into a biosensor.
References
- Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Structure at 2.8a° resolution of F1- ATPase from bovine heart mitochondria. Nature, 370:621-628.
- Ballmoos, C. V., Cook, G. M., and Dimroth, P. (2008). Unique rotary ATP synthase and its biological diversity. Annu. Rev. Biophys., 37:43-64.
- Boyer, P. D. (1993). The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim. Biophys. Acta., 1140:215-250.
- Boyer, P. D. (1997). The ATP synthase-a splendid molecular machine. Annu. Rev. Biochem., 66:717-749.
- Cheng, J., Zhang, X. A., Shu, Y. G., and Yue, J. C. (2010). FoF1-ATPase activity regulated by external links on b subunits. Biochem. Biophys. Res. Commun., 391:182- 186.
- Diez, M., Zimmermann, B., Börsch, M., König, M., Schweinberger, E., Steigmiller, S., Reuter, R., Felekyan, S., Kudryavtsev, V., Seidel, C. A. M., and Gräber, P. (2004). Proton-powered subunit rotation in single membrane-bound FoF1-ATP synthase. Nat. Struct. Mol. Biol., 11:135-141.
- Itoh, H., Takahashi, A., Adachi, K., Noji, H., Yasuda, R., Yoshida, M., and Jr, K. K. (2004). Mechanically driven ATP synthesis by F1-ATPase. Nature, 427:465-468.
- Jonathan, L. E., Chakraborty, A. K., and Oster, G. (2006). Simple models for extracting mechanical work from the ATP hydrolysis cycle. Biophys. J., 90:4281-4294.
- Junge, W. (2004). Protons, proteins and ATP. Photosynthesis Res., 80:197-221.
- Kargovsky, A. V., Romanovsky, Y. M., and Tikhonov, A. N. (2009). F1-ATPase as an auto-oscillatory system. Biophysics, 54:1-7.
- Kinosita, J. K., Yasuda, R., Noji, H., and Adachi, K. (2000). A rotary molecular motor that can work at near 100% efficiency. Phil. Trans. R. Soc. Lond. B, 355:473-489.
- Kinosita, K. J., Adachi, K., and Itoh, H. (2004). Rotation of F1-ATPase: How an ATP-driven molecular machine may work. Annu. Rev. Biophys. Biomol. Struct., 33:245-268.
- Leslie, A. G. W. and Walker, J. E. (2000). Structural model of F1-ATPase and the implications for rotary catalysis. Phil. Trans. R. Soc. Lond. B, 355:465-472.
- Nakamoto, R. K., Scanlon, J. A. B., and Al-Shawi, M. K. (2008). The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys., 476:43-50.
- Nishizaka, T., Oiwa, K., Noji, H., Kimura, S., Muneyuki, E., Yoshida, M., and Jr, K. K. (2004). Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nat. Struct. Mol. Biol., 11:142-148.
- Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. (1997). Direct observation of the rotation of F1-ATPase. Nature, 386:299-302.
- Ogata, K. (2004). System Dynamics. University of Minnesota, Minnesota, 4th edition.
- Oster, G. and Wang, H. (2000). Why is the efficiency of the F1 ATPase so high? J. Bioenerg. Biomembr., 332:459-469.
- Pänke, O. and Rumberg, B. (1996). Kinetic modelling of the proton translocating CFoCF1-ATP synthase from spinach. FEBS Lett., 383:196-200.
- Shu, Y. G. and Lai, P. Y. (2008). Systematic kinetics study of FoF1-ATPase. J. Phys. Chem. B, 112:13453-13459.
- Shu, Y. G., Yue, J. C., and Ou-Yang, Z. C. (2010). FoF1- ATPase, rotary motor and biosensor. Nanoscale, 2:1284-1293.
- Steigmiller, S., Turina, P., and Gräber, P. (2008). The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proc. Natl. Acad. Sci. USA, 105:3745-3750.
- Sun, S. X., Wang, H., and Oster, G. (2004). Asymmetry in the F1-ATPas and its implications for the rotational cycle. Biophys. J., 86:1373-1384.
- Turina, P., Samoray, D., and Gräber, P. (2003). H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CFoCF1-liposomes. EMBO J., 22:418-426.
- Wächter, A., Bi, Y. M., Dunn, S. D., Cain, B. D., Sielaff, H., Wintermann, F., Engelbrecht, S., and Junge, W. (2011). Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proc. Natl. Acad. Sci. USA, 108:3924-3929.
- Wang, H. and Oster, G. (1998). Energy transduction in the F1 motor of ATP synthase. Nature, 396:279-282.
- Weber, J. and Senior, A. E. (2003). ATP synthesis driven by proton transport in F1F0-ATP synthase. FEBS Lett., 545:61-70.
- Wilkens, S. (2005). Rotary molecular motors. Adv. Protein Chem., 71:345-382.
- Xing, J., Liao, J. C., and Oster, G. (2005). Making ATP. Proc. Natl. Acad. Sci. USA, 102:16539-16546.
- Yasuda, Y., Noji, H., Kinosita, K., and Yoshida, M. (1998). F1-ATPase is a highly efficient molecular motor that rotates with discrete 120? steps. Cell, 93:1117-1124.
Paper Citation
in Harvard Style
Shu Y. and Ou-Yang Z. (2012). FoF1-ATPase STATOR REGULATION STUDIED WITH A RESONANCE MODEL . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 132-137. DOI: 10.5220/0003753401320137
in Bibtex Style
@conference{biodevices12,
author={Yao-Gen Shu and Zhong-Can Ou-Yang},
title={FoF1-ATPase STATOR REGULATION STUDIED WITH A RESONANCE MODEL},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},
year={2012},
pages={132-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003753401320137},
isbn={978-989-8425-91-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
TI - FoF1-ATPase STATOR REGULATION STUDIED WITH A RESONANCE MODEL
SN - 978-989-8425-91-1
AU - Shu Y.
AU - Ou-Yang Z.
PY - 2012
SP - 132
EP - 137
DO - 10.5220/0003753401320137