A VACCINATION CONTROL LAW BASED ON FEEDBACK LINEARIZATION TECHNIQUES FOR SEIR EPIDEMIC MODELS

S. Alonso-Quesada, M. De la Sen, A. Ibeas

2012

Abstract

This paper presents a vaccination strategy for fighting against the propagation of epidemic diseases. The disease propagation is described by a SEIR (susceptible plus infected plus infectious plus removed by immunity populations) epidemic model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The vaccination strategy is based on a continuous-time nonlinear control law synthesized via an exact feedback input-output linearization approach. The control objective is to asymptotically eradicate the infection. Moreover, the positivity and stability properties of the controlled system are investigated.

References

  1. De la Sen, M., Agarwal, R. P., Ibeas, A., Alonso-Quesada, S., 2010. On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls. Advances in Difference Equations 2010, Article ID 281612, 42 pages, doi:10.1155/2010/281612.
  2. De la Sen, M., Agarwal, R. P., Ibeas, A., Alonso-Quesada, S., 2011. On the existence of equilibrium points, boundedness, oscillating behavior and positivity of a SVEIRS epidemic model under constant and impulsive vaccination. Advances in Difference Equations 2011, Article ID 748608, 32 pages, doi:10.1155/2011/748608.
  3. De la Sen, M., Alonso-Quesada, S., 2010. On vaccination control tools for a general SEIR-epidemic model. In 18th Mediterranean Conference on Control & Automation (MED'10), pp. 1322-1328, doi:10.1109/MED.2010.5547865.
  4. Fulton, W., Harris, J. D., 1991. Representation Theory, Springer, New York.
  5. Isidori, A., 1995. Nonlinear Control Systems, SpringerVerlag, London.
  6. Jumpen, W., Orankitjaroen, S., Boonkrong, P., Wiwatanapataphee, B., 2011. SEIQR-SIS epidemic network model and its stability. International Journal of Mathematics and Computers in Simulation 5, pp. 326-333.
  7. Keeling, M. J., Rohani, P., 2008. Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton and Oxford.
  8. Li, M. Y., Graef, J. R., Wang, L., Karsai, J., 1999. Global dynamics of a SEIR model with varying total population size. Mathematical Biosciences 160, pp. 191-213.
  9. Makinde, O. D., 2007. Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Applied Mathematics and Computation 184, pp. 842-848.
  10. Mollison, D., 2003. Epidemic Models: Their Structure and Relation to Data, Publications of the Newton Institute, Cambridge University Press.
  11. Mukhopadhyay, B., Bhattacharyya, R., 2007. Existence of epidemic waves in a disease transmission model with two-habitat population. International Journal of Systems Science 38, pp. 699-707.
  12. Safi, M. A., Gumel, A. B., 2011. Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine. Computers and Mathematics with Applications 61, pp. 3044-3070.
  13. Song, X. Y., Jiang, Y., Wei, H. M., 2009. Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Applied Mathematics and Computation 214, pp. 381-390.
  14. Xu, R., Ma, Z., Wang, Z., 2010. Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity. Computers and Mathematics with Applications 59, pp. 3211-3221.
  15. Zhang, T. L., Liu, J. L., Teng, Z. D., 2009. Dynamic behaviour for a nonautonomous SIRS epidemic model with distributed delays. Applied Mathematics and Computation 214, pp. 624-631.
Download


Paper Citation


in Harvard Style

Alonso-Quesada S., De la Sen M. and Ibeas A. (2012). A VACCINATION CONTROL LAW BASED ON FEEDBACK LINEARIZATION TECHNIQUES FOR SEIR EPIDEMIC MODELS . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012) ISBN 978-989-8425-90-4, pages 76-85. DOI: 10.5220/0003764900760085


in Bibtex Style

@conference{bioinformatics12,
author={S. Alonso-Quesada and M. De la Sen and A. Ibeas},
title={A VACCINATION CONTROL LAW BASED ON FEEDBACK LINEARIZATION TECHNIQUES FOR SEIR EPIDEMIC MODELS},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)},
year={2012},
pages={76-85},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003764900760085},
isbn={978-989-8425-90-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)
TI - A VACCINATION CONTROL LAW BASED ON FEEDBACK LINEARIZATION TECHNIQUES FOR SEIR EPIDEMIC MODELS
SN - 978-989-8425-90-4
AU - Alonso-Quesada S.
AU - De la Sen M.
AU - Ibeas A.
PY - 2012
SP - 76
EP - 85
DO - 10.5220/0003764900760085