GENERATIVE TOPOGRAPHIC MAPPING AND FACTOR ANALYZERS

Rodolphe Priam, Mohamed Nadif

2012

Abstract

By embedding random factors in the Gaussian mixture model (GMM), we propose a new model called faGTM. Our approach is based on a flexible hierarchical prior for a generalization of the generative topographic mapping (GTM) and the mixture of principal components analyzers (MPPCA). The parameters are estimated with expectation-maximization and maximum a posteriori. Empirical experiments show the interest of our proposal.

References

  1. Baek, J., McLachlan, G., and Flack, L. (2009). Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of highdimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence.
  2. Bishop, C., Svensen, M., and Williams, C. (1997). Magnification factors for the gtm algorithm. In Fifth International Conference on Artificial Neural Networks, pages 64 -69.
  3. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press.
  4. Bishop, C. M., Svensén, M., and Williams, C. K. I. (1998). Developpements of generative topographic mapping. Neurocomputing, 21:203-224.
  5. Dempster, A., Laird, N., and Rubin, D. (1977). Maximumlikelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B., 39, pages 1-38.
  6. Ghahramani, Z. and Hinton, G. E. (1996). The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1.
  7. Kohonen, T. (1997). Self-organizing maps. Springer.
  8. Maniyar, D. M. and Nabney, I. T. (2006). Visual data mining using principled projection algorithms and information visualization techniques. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 7806, pages 643-648. ACM.
  9. McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. John Wiley and Sons, New York.
  10. Tipping, M. E. and Bishop, C. M. (1999a). Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2):443-482.
  11. Tipping, M. E. and Bishop, C. M. (1999b). Probabilistic principal component analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 61(3):pp. 611-622.
  12. Tin?o, P. and Gianniotis, N. (2007). Metric properties of structured data visualizations through generative probabilistic modeling. In Proceedings of the 20th international joint conference on Artifical intelligence, pages 1083-1088.
Download


Paper Citation


in Harvard Style

Priam R. and Nadif M. (2012). GENERATIVE TOPOGRAPHIC MAPPING AND FACTOR ANALYZERS . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8425-98-0, pages 284-287. DOI: 10.5220/0003765202840287


in Bibtex Style

@conference{icpram12,
author={Rodolphe Priam and Mohamed Nadif},
title={GENERATIVE TOPOGRAPHIC MAPPING AND FACTOR ANALYZERS},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2012},
pages={284-287},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003765202840287},
isbn={978-989-8425-98-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - GENERATIVE TOPOGRAPHIC MAPPING AND FACTOR ANALYZERS
SN - 978-989-8425-98-0
AU - Priam R.
AU - Nadif M.
PY - 2012
SP - 284
EP - 287
DO - 10.5220/0003765202840287