EXTRACTION OF BLOOD DROPLET FLIGHT TRAJECTORIES FROM VIDEOS FOR FORENSIC ANALYSIS

L. A. Zarrabeitia, D. A. Aruliah, F. Z. Qureshi

2012

Abstract

We present a method for extracting three-dimensional flight trajectories of liquid droplets from video data. A high-speed stereo camera pair records videos of experimental reconstructions of projectile impacts and ensuing droplet scattering. After background removal and segmentation of individual droplets in each video frame, we introduce a model-based matching technique to accumulate image paths for individual droplets. Our motion detection algorithm is designed to deal gracefully with the lack of feature points, with the similarity of droplets in shape, size, and color, and with incomplete droplet paths due to noise, occlusions, etc. The final reconstruction algorithm pairs two-dimensional paths accumulated from each of the two cameras’ videos to reconstruct trajectories in three dimensions. The reconstructed droplet trajectories constitute a starting point for a physically accurate model of blood droplet flight for forensic bloodstain pattern analysis.

References

  1. Balch, T., Khan, Z., and Veloso, M. (2001). Automatically tracking and analyzing the behavior of live insect colonies. In AGENTS 7801, pages 521-528. ACM.
  2. Betke, M., Hirsh, D. E., Bagchi, A., Hristov, N. I., Makris, N. C., and Kunz, T. H. (2007). Tracking large variable numbers of objects in clutter. In CVPR 7807, pages 1-8. IEEE.
  3. Bevel, T. and Gardner, R. M. (2008). Bloodstain Pattern Analysis With an Introduction to Crimescene Reconstruction. CRC Press, 3rd edition.
  4. Bijsterbosch, J. and Volgenant, A. (2010). Solving the rectangular assignment problem and applications. Ann. Oper. Res., 181:443-462.
  5. Bourgeois, F. and Lassalle, J.-C. (1971). An extension of the Munkres algorithm for the assignment problem to rectangular matrices. Commun. ACM, 14:802-804.
  6. Bradski, G. (2000). The OpenCV Library. Dr. Dobbs J.
  7. Buck, U., Kneubuehl, B., Näther, S., Albertini, N., Schmidt, L., and Thali, M. (2011). 3D bloodstain pattern analysis: Ballistic reconstruction of the trajectories of blood drops and determination of the centres of origin of the bloodstains. Forensic Sci. Int., 206(1-3):22-28.
  8. Dasgupta, D., Hernandez, G., Garrett, D., Vejandla, P. K., Kaushal, A., Yerneni, R., and Simien, J. (2008). A comparison of multiobjective evolutionary algorithms with informed initialization and Kuhn-Munkres algorithm for the sailor assignment problem. In GECCO 7808, pages 2129-2134. ACM.
  9. Grover, D., Tower, J., and Tavaré, S. (2008). O fly, where art thou? J. Roy. Soc. Interface, 5(27):1181-1191.
  10. Hartley, R. and Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge University Press, 2nd edition.
  11. Iwase, S. and Saito, H. (2004). Parallel tracking of all soccer players by integrating detected positions in multiple view images. In ICPR 2004, volume 4, pages 751- 754. IEEE.
  12. Khan, Z., Balch, T., and Dellaert, F. (2003). Efficient particle filter-based tracking of multiple interacting targets using an MRF-based motion model. In IROS 2003, volume 1, pages 254-259. IEEE.
  13. Khan, Z., Balch, T., and Dellaert, F. (2005a). MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets. IEEE Trans. Pattern Anal. Mach. Intell., 27(11):1805-1918.
  14. Khan, Z., Balch, T., and Dellaert, F. (2005b). Multitarget tracking with split and merged measurements. In CVPR 7805, volume 1, pages 605-610. IEEE.
  15. Kuhn, H. (1955). The Hungarian Method for the assignment problem. Nav. Res. Logist., 2(1-2):83-97.
  16. Munkres, J. (1957). Algorithms for the Assignment and Transportation Problems. SIAM J. Appl. Math., 5(1):32-38.
  17. Nillius, P., Sullivan, J., and Carlsson, S. (2006). MultiTarget Tracking-Linking Identities using Bayesian Network Inference. In CVPR 7806, volume 2, pages 2187-2194.
  18. Poore, A. B. and Gadaleta, S. (2006). Some assignment problems arising from multiple target tracking. Math. Comput. Model., 43(9-10):1074-1091.
  19. Reid, D. (1979). An algorithm for tracking multiple targets. IEEE Trans. Autom. Control, 24(6):843-854.
  20. Straw, A. D., Branson, K., Neumann, T. R., and Dickinson, M. H. (2011). Multi-camera real-time threedimensional tracking of multiple flying animals. J. Roy. Soc. Interface, 8(56):395-409.
  21. Veenman, C., Reinders, M., and Backer, E. (2001). Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell., 23(1):54-72.
  22. Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. ACM Comput. Surv., 38(4).
Download


Paper Citation


in Harvard Style

A. Zarrabeitia L., A. Aruliah D. and Z. Qureshi F. (2012). EXTRACTION OF BLOOD DROPLET FLIGHT TRAJECTORIES FROM VIDEOS FOR FORENSIC ANALYSIS . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 142-153. DOI: 10.5220/0003770201420153


in Bibtex Style

@conference{icpram12,
author={L. A. Zarrabeitia and D. A. Aruliah and F. Z. Qureshi},
title={EXTRACTION OF BLOOD DROPLET FLIGHT TRAJECTORIES FROM VIDEOS FOR FORENSIC ANALYSIS},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={142-153},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003770201420153},
isbn={978-989-8425-99-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - EXTRACTION OF BLOOD DROPLET FLIGHT TRAJECTORIES FROM VIDEOS FOR FORENSIC ANALYSIS
SN - 978-989-8425-99-7
AU - A. Zarrabeitia L.
AU - A. Aruliah D.
AU - Z. Qureshi F.
PY - 2012
SP - 142
EP - 153
DO - 10.5220/0003770201420153