LOW LATENCY RECOGNITION AND REPRODUCTION OF NATURAL GESTURE TRAJECTORIES
Ulf Großekathöfer, Amir Sadeghipour, Thomas Lingner, Peter Meinicke, Thomas Hermann, Stefan Kopp
2012
Abstract
In human-machine interaction scenarios, low latency recognition and reproduction is crucial for successful communication. For reproduction of general gesture classes it is important to realize a representation that is insensitive with respect to the variation of performer specific speed development along gesture trajectories. Here, we present an approach to learning of speed-invariant gesture models that provide fast recognition and convenient reproduction of gesture trajectories. We evaluate our gesture model with a data set comprising 520 examples for 48 gesture classes. The results indicate that the model is able to learn gestures from few observations with high accuracy.
References
- Amit, R. and Mataric, M. (2002). Learning movement sequences from demonstration. In ICDL 7802: Proceedings of the 2nd International Conference on Development and Learning, pages 203-208, Cambridge, Massachusetts. MIT Press.
- Bergmann, K. and Kopp, S. (2009). Gnetic - using bayesian decision networks for iconic gesture generation. In Proceedings of the 9th Conference on Intelligent Virtual Agents, pages 76-89. Springer.
- Calinon, S., D'halluin, F., Sauser, E., Caldwell, D., and Billard, A. (2010). Learning and reproduction of gestures by imitation. Robotics Automation Magazine, IEEE, 17(2):44 -54.
- Chiba, S. and Sakoe, H. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1):43.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38.
- Garrett, D., Peterson, D., Anderson, C., and Thaut, M. (2003). Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 11(2):141-144.
- Grosshauser, T., Großekathöfer, U., and Hermann, T. (2010). New sensors and pattern recognition techniques for string instruments. In International Conference on New Interfaces for Musical Expression, NIME2010, Sydney, Australia.
- Inamura, T., Toshima, I., and Nakamura, Y. (2003). Acquiring motion elements for bidirectional computation of motion recognition and generation. In Siciliano, B. and Dario, P., editors, Experimental Robotics VIII, volume 5, pages 372-381. Springer-Verlag.
- Jaakkola, T., Diekhaus, M., and Haussler, D. (1999). Using the fisher kernel method to detect remote protein homologies. Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, pages 149-158.
- Kellokumpu, V., Pietikäinen, M., and Heikkilä, J. (2005). Human activity recognition using sequences of postures. In Proceedings of the IAPR Conference on Machine Vision Applications (MVA 2005), Tsukuba Science City, Japan, pages 570-573. Citeseer.
- Kulic, D., Takano, W., and Nakamura, Y. (2008). Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. The International Journal of Robotics Research, 27(7):761.
- Kwon, J. and Park, F. (2008). Natural movement generation using hidden markov models and principal components. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 38(5):1184-1194.
- Rabiner, L. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257-286.
- Tolani, D., Goswami, A., and Badler, N. (2000). Realtime inverse kinematics techniques for anthropomorphic limbs. Graphical models, 62(5):353-388.
- Wilson, A. and Bobick, A. (1999). Parametric hidden markov models for gesture recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(9):884-900.
- Wöhler, N.-C., Großekathöfer, U., Dierker, A., Hanheide, M., Kopp, S., and Hermann, T. (2010). A calibrationfree head gesture recognition system with online capability. In International Conference on Pattern Recognition, pages 3814-3817, Istanbul, Turkey. IEEE Computer Society, IEEE Computer Society.
Paper Citation
in Harvard Style
Großekathöfer U., Sadeghipour A., Lingner T., Meinicke P., Hermann T. and Kopp S. (2012). LOW LATENCY RECOGNITION AND REPRODUCTION OF NATURAL GESTURE TRAJECTORIES . In Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-8425-99-7, pages 154-161. DOI: 10.5220/0003770901540161
in Bibtex Style
@conference{icpram12,
author={Ulf Großekathöfer and Amir Sadeghipour and Thomas Lingner and Peter Meinicke and Thomas Hermann and Stefan Kopp},
title={LOW LATENCY RECOGNITION AND REPRODUCTION OF NATURAL GESTURE TRAJECTORIES},
booktitle={Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2012},
pages={154-161},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003770901540161},
isbn={978-989-8425-99-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - LOW LATENCY RECOGNITION AND REPRODUCTION OF NATURAL GESTURE TRAJECTORIES
SN - 978-989-8425-99-7
AU - Großekathöfer U.
AU - Sadeghipour A.
AU - Lingner T.
AU - Meinicke P.
AU - Hermann T.
AU - Kopp S.
PY - 2012
SP - 154
EP - 161
DO - 10.5220/0003770901540161