MOBILE, REAL-TIME SIMULATOR FOR A CORTICAL VISUAL PROSTHESIS

Horace Josh, Benedict Yong, Lindsay Kleeman

2012

Abstract

This paper presents a mobile, real-time simulator system for a cortical visual prosthesis, making use of current neurophysiological models of visuotopy. This system overcomes fundamental limitations of current simulator systems which include simplified visuotopic mapping and the lack of mobility, limiting use in open and untethered environments. A visual prosthesis simulator provides a useful demonstration and research platform for a bionic vision system. It can be used to simulate the visual results of such an implant, as well as aid in the development of algorithms and techniques that would most suitably present information to a patient. Cortical visual prostheses work by electrically stimulating the visual cortex, the part of the brain primarily responsible for vision, and eliciting visual perceptions known as ‘phosphenes’. The simulator’s main function is to translate a scene provided by a camera sensor into a low resolution form that closely mimics the phosphene pattern produced by a cortical visual prosthesis. Preliminary psychophysics testing has suggested that in some situations it can be advantageous to have four different levels of intensity rather than two. It was also found that there is a learning effect associated with continued use of the system which would need further psychophysics study.

References

  1. Bak, M., Girvin, J. P., Hambrecht, F. T., Kufts, C. V., Loeb, G. E., Schmidt, E. M., 1990. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Medical & Biological Engineering & Computing, vol. 28, pp. 257-259.
  2. Balasubramanian, M., Polimeni, J. R., Schwartz, E. L., 2002. The v1-v2-v3 complex: quasiconformal dipole maps in primate striate and extra-striate cortex. Neural Networks, vol. 15, iss.10, pp1157-1163.
  3. Bear, M. F., Connors, B. W., Paradiso, M. A. 2007. Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins. Baltimore, 3rd edition.
  4. Brindley, G. S., Lewin, W. S., 1968. The sensations produced by electrical stimulation of the visual cortex. Journal of Physiology, vol. 196, pp. 479-493.
  5. Canny, J., 1986. A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698.
  6. Chen, S. C., Hallum, L. E., Lovell, N. H., Suaning, G. J., 2005. Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. Journal of Neural Engineering, vol. 2, pp. S135-S145.
  7. Chen, S. C., Suaning, G. J., Morley, J. W., Lovell, N. H., 2009. Simulating prosthetic vision: i. visual models of phosphenes. Vision Research, vol. 49, pp. 1493-1506.
  8. Dobelle, W. H., Mladejovsky, M. G., 1974. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. Journal of Physiology, vol. 243, pp. 553-576.
  9. Dobelle, W. H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S., Girvin, J. P., 1976. 'Braille' reading by a blind volunteer by visual cortex stimulation. Nature, vol. 259, pp. 111-112.
  10. Dowling, J. A., Maeder, A. J., Boles, W., 2004. Mobility enhancement and assessment for a visual prosthesis. Proceedings of SPIE Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, vol. 5369, pp. 780-791.
  11. Duncan, R. O., Boynton, G. M., 2003. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron, vol. 38, pp. 659-671.
  12. Fehervari, T., Matsuoka, M., Okuno, H., Yagi, T., 2010. Real-time simulation of phosphene images evoked by electrical stimulation of the visual cortex. Neural Information Processing, vol. 6443, pp. 171-178.
  13. Horton, J. C., Hoyt, W. F., 1991. The representation of the visual field in human striate cortex: a revision of the classic holmes map. Archives of Ophthalmology, vol. 109, pp. 816-824.
  14. Humayun, M. S., de Juan, E., Dagnelie, G., Greenberg, R. J., Propst, R. H., Phillips, D. H., 1996. Visual perception elicited by electrical stimulation of retina in blind humans. Archives of Opthalmology, vol. 114, pp. 40-46.
  15. Lee, J. S. J., Haralick, R. M., Shapiro, L. G., 1987. Morphologic Edge Detection. IEEE Journal of Robotics and Automation, vol. 3, pp. 142-156.
  16. Monash Vision Group, 2010. Monash vision direct to brain bionic eye. Viewed 11th July, 2011, <http://monash.edu.au/bioniceye>.
  17. Polimeni, J. R., Balasubramanian, M., Schwartz, E. L., 2006. Multi-area visuotopic map complexes in macaque striate and extra-striate cortex. Vision Research, vol. 46, pp. 3336-3359.
  18. Schira, M. M., Wade, A. R., Tyler, C. W., 2007. Twodimensional mapping of the central and parafoveal visual field to human visual cortex. Journal of Neurophysiology, vol. 97, pp. 4284-4295.
  19. Schira, M. M., Tyler, C. W., Spehar, B., Breakspear, M., 2010. Modeling magnification and anisotropy in the primate foveal confluence. PLoS Computational Biology, vol. 6, iss.1, pp. 1-10.
  20. Schmidt, E. M., Bak, M. J., Hambrecht, F. T., Kufta, C. v., O'Rourke, D. K., Vallabhanath, P., 1996. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, vol. 119, pp. 507-522.
  21. Schwartz, 1977. Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics, vol. 25, pp. 181- 194.
  22. Srivastava, N. R., Troyk, P. R., Dagnelie, G., 2009. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device. Journal of Neural Engineering, vol. 6, pp 1-14.
  23. Van Rheede, J. J., Kennard, C., Hicks, S. L., 2010. Simulating prosthetic vision: optimizing the information content of a limited visual display. Journal of Vision, 10(14):32, pp. 1-15.
  24. Veraart, C., Raftopoulos, C., Mortimer, J. T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., Wanet-Defalque, M., 1998. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Research, vol. 813, pp. 181-186.
  25. Wandell, B. A., Dumoulin, S. O., Brewer, A. A., 2007. Visual field maps in human cortex: review. Neuron, vol. 56, pp. 366-383.
  26. Zhao, Y., Lu, Y., Tian, Y., Li, L., Ren, Q., Chai, X., 2010. Image processing based recognition of images with a limited number of pixels using simulated prosthetic vision. Information Sciences, vol. 180, pp. 2915-2924.
  27. Vid.1) www.youtube.com/watch?v=oAxaNloHVHg Vid.2) www.youtube.com/watch?v=2byh1qQfWGQ Vid.3) www.youtube.com/watch?v=gIVrnsk04LA
Download


Paper Citation


in Harvard Style

Josh H., Yong B. and Kleeman L. (2012). MOBILE, REAL-TIME SIMULATOR FOR A CORTICAL VISUAL PROSTHESIS . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012) ISBN 978-989-8425-91-1, pages 37-46. DOI: 10.5220/0003773300370046


in Bibtex Style

@conference{biodevices12,
author={Horace Josh and Benedict Yong and Lindsay Kleeman},
title={MOBILE, REAL-TIME SIMULATOR FOR A CORTICAL VISUAL PROSTHESIS},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)},
year={2012},
pages={37-46},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003773300370046},
isbn={978-989-8425-91-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2012)
TI - MOBILE, REAL-TIME SIMULATOR FOR A CORTICAL VISUAL PROSTHESIS
SN - 978-989-8425-91-1
AU - Josh H.
AU - Yong B.
AU - Kleeman L.
PY - 2012
SP - 37
EP - 46
DO - 10.5220/0003773300370046