MACHINE LEARNING OF HUMAN SLEEP PATTERNS BASED ON STAGE BOUT DURATIONS

Francis W. Usher, Chiying Wang, Sergio A. Alvarez, Carolina Ruiz, Majaz Moonis

2012

Abstract

This paper explores the discovery of patterns in human sleep data based on the duration statistics of continuous bouts in individual sleep stages during a full night of sleep. Hypnograms from 244 patients are examined. Stage bout durations are described in terms of the quartiles of their stage bout duration distributions, yielding 15 descriptive variables corresponding to wake after sleep onset, NREM stage 1, NREM stage 2, slow wave sleep, and REM sleep. Unsupervised Expectation-Maximization clustering is employed to identify distinct groups of hypnograms based on stage bout durations. Each group is shown to be characterized by bout duration quartiles of specific sleep stages, the values of which differ significantly from those of other groups (p<0.05). Among other sleep-related and health-related variables, several are shown to be significantly different among the bout duration groups found through clustering, while multivariate linear regression fails to yield good predictive models based on the same bout duration variables used in the clustering analysis. This provides an example of the successful use of machine learning to uncover naturally occurring dynamical patterns in sleep data that can also provide sleep-based indicators of health.

References

  1. Aserinsky, E. and Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118(3062):273-274.
  2. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1):289-300.
  3. Bianchi, M. T., Cash, S. S., Mietus, J., Peng, C.-K., and Thomas, R. (2010). Obstructive sleep apnea alters sleep stage transition dynamics.
  4. Borg, I. and Groenen, P. J. F. (2005). Modern Multidimensional Scaling: Theory and Applications (Springer Series in Statistics). Springer, Berlin, 2nd edition.
  5. Burns, J. W., Crofford, L. J., and Chervin, R. D. (2008). Sleep stage dynamics in fibromyalgia patients and controls. Sleep Medicine, 9(6):689-696.
  6. B?rezinová, V. (1976). Duration of EEG sleep stages in different types of disturbed night sleep. Postgrad Med J., 52(603):3436.
  7. Cohen, W. W. (1995). Fast effective rule induction. In Twelfth International Conference on Machine Learning, pages 115-123. Morgan Kaufmann.
  8. Dang-Vu, T., Schabus, M., Desseilles, M., Sterpenich, V., Bonjean, M., and Maquet, P. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep, 33(12):1589-603.
  9. Danker-Hopfe, H., Schfer, M., Dorn, H., Anderer, P., Saletu, B., Gruber, G., Zeitlhofer, J., Kunz, D., Barbanoj, M.-J., Himanen, S., Kemp, B., Penzel, T., Rschke, J., and Dorffner, G. (2005). Percentile reference charts for selected sleep parameters for 20- to 80- year-old healthy subjects from the SIESTA database. Somnologie - Schlafforschung und Schlafmedizin, 9:3-14. 10.1111/j.1439-054X.2004.00038.x.
  10. Dement, W. and Kleitman, N. (1957). The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. Journal of Experimental Psychology, 53:339-46.
  11. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1-38.
  12. Diekelmann, S. and Born, J. (2010). The memory function of sleep. Nat Rev Neurosci, 11(2):114-126.
  13. Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining researchers. HewlettPackard Labs Technical Report HPL-2003-4.
  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The WEKA data mining software: an update. SIGKDD Explor., 11(1):10-18.
  15. Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification, 2:193-218. 10.1007/BF01908075.
  16. Iber, C., Ancoli-Israel, S., Chesson, A., and Quan, S. (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specifications. American Academy of Sleep Medicine, Westchester, Illinois, USA.
  17. Johns, M. W. (1991). A new method for measuring daytime sleepiness: the epworth sleepiness scale. Sleep, 14(6):540-545.
  18. Khasawneh, A., Alvarez, S. A., Ruiz, C., Misra, S., and Moonis, M. (2011). EEG and ECG characteristics of human sleep composition types. In Traver, V., Fred, A., Filipe, J., and Gamboa, H., editors, Proc. HEALTHINF 2011, in conjunction with BIOSTEC 2011, pages 97-106. SciTePress.
  19. Kishi, A., Struzik, Z., Natelson, B., Togo, F., and Yamamoto, Y. (2008). Dynamics of sleep stage transitions in healthy humans and patients with chronic fatigue syndrome. Am J Physiol Regul Integr Comp Physiol., 294(6):R1980-7.
  20. Krueger, J. M., Rector, D. M., Roy, S., Van Dongen, H. P. A., Belenky, G., and Panksepp, J. (2008). Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci, 9(12):910-919.
  21. Lo, C.-C., Amaral, L. A. N., Havlin, S., Ivanov, P. C., Penzel, T., Peter, J.-H., and Stanley, H. E. (2002). Dynamics of sleep-wake transitions during sleep. Europhys. Lett., 57(5):625-631.
  22. Loomis, A., Harvey, E., and Hobart, G. (1937). Cerebral states during sleep, as studied by human brain potentials. J. Experimental Psychology, 21(2):127-144.
  23. Moser, D., Anderer, P., Gruber, G., Parapatics, S., Loretz, E., Boeck, M., Kloesch, G., Heller, E., Schmidt, A., Danker-Hopfe, H., Saletu, B., Zeitlhofer, J., and Dorffner, G. (2009). Sleep classification according to AASM and Rechtschaffen & Kales: Effects on sleep scoring parameters. Sleep, 32(2):139-149.
  24. Neal, R. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, pages 355- 368. Kluwer Academic Publishers.
  25. Penzel, T., Kantelhardt, J. W., Lo, C.-C., Voigt, K., and Vogelmeier, C. F. (2003). Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology, 28(S1):S48-S53.
  26. Propper, R., Christman, S., and Olejarz, S. (2007). Homerecorded sleep architecture as a function of handedness II: Consistent right- versus consistent lefthanders. J Nerv Ment Dis., 195(8):689-692.
  27. Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850.
  28. Rao, M., Blackwell, T., Redline, S., Stefanick, M., AncoliIsrael, S., and Stone, K. (2009). Association between sleep architecture and measures of body composition. Sleep, 32(4):483-90.
  29. Rechtschaffen, A. and Kales, A., editors (1968). A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects. US Department of Health, Education, and Welfare Public Health Service - NIH/NIND.
  30. Storch, E. A., Roberti, J. W., and Roth, D. A. (2004). Factor structure, concurrent validity, and internal consistency of the Beck depression inventory-second edition in a sample of college students. Depression and Anxiety, 19(3):187-189.
  31. Sulekha, S., Thennarasu, K., Vedamurthachar, A., Raju, T., and Kutty, B. (2006). Evaluation of sleep architecture in practitioners of Sudarshan Kriya yoga and Vipassana meditation. Sleep and Biological Rhythms, 4(3):207-214.
  32. Zhang, L., Samet, J., Caffo, B., and Punjabi, N. (2006). Cigarette smoking and nocturnal sleep architecture. Am J Epidemiol., 164(6):529-537.
Download


Paper Citation


in Harvard Style

W. Usher F., Wang C., A. Alvarez S., Ruiz C. and Moonis M. (2012). MACHINE LEARNING OF HUMAN SLEEP PATTERNS BASED ON STAGE BOUT DURATIONS . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012) ISBN 978-989-8425-88-1, pages 71-80. DOI: 10.5220/0003782500710080


in Bibtex Style

@conference{healthinf12,
author={Francis W. Usher and Chiying Wang and Sergio A. Alvarez and Carolina Ruiz and Majaz Moonis},
title={MACHINE LEARNING OF HUMAN SLEEP PATTERNS BASED ON STAGE BOUT DURATIONS},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)},
year={2012},
pages={71-80},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003782500710080},
isbn={978-989-8425-88-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2012)
TI - MACHINE LEARNING OF HUMAN SLEEP PATTERNS BASED ON STAGE BOUT DURATIONS
SN - 978-989-8425-88-1
AU - W. Usher F.
AU - Wang C.
AU - A. Alvarez S.
AU - Ruiz C.
AU - Moonis M.
PY - 2012
SP - 71
EP - 80
DO - 10.5220/0003782500710080