FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM

Josef Kohout, Petr Kellnhofer, Saulo Martelli

2012

Abstract

This paper proposes a gradient domain deformation for wrapping surface models of muscles around bones as they move during a simulation of physiological activities. Each muscle is associated with one or more poly-lines that represent the muscle skeleton to which the surface model of the muscle is bound so that transformation of the skeleton (caused by the movement of bones) produces transformation of the vertices of the mesh subject to Laplacian linear constraints to preserve the local shape of the mesh and non-linear volume constraints to preserve the volume of the mesh. All these constraints form a system of equations that is solved using the iterative Gauss-Newton method with Lagrange multipliers. Our C++ implementation can wrap a muscle of medium size in about a couple of ms up to 400 ms on commodity hardware depending on the type of parallelization, whilst it can keep the change in volume below 0.04%. A preliminary biomechanical assessment of the proposed technique suggests that it can produce realistic results and thanks to its rapid processing speed, it might be an attractive alternative to the methods that are used in clinical practise at present.

References

  1. AnyBody (2010). Anybody http://www.anybodytech.com.
  2. AnyBody (2010). Anybody http://www.anybodytech.com.
  3. Arnold, A. S., Salinas, S., Asakawa, D. J., and Delp, S. L. (2000). Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Computer aided surgery official journal of the International Society for Computer Aided Surgery, 5(2):108-119.
  4. Arnold, A. S., Salinas, S., Asakawa, D. J., and Delp, S. L. (2000). Accuracy of muscle moment arms estimated from mri-based musculoskeletal models of the lower extremity. Computer aided surgery official journal of the International Society for Computer Aided Surgery, 5(2):108-119.
  5. Aubel, A. and Thalmann, D. (2000). Efficient muscle shape deformation. In IFIP, pages 132-142.
  6. Aubel, A. and Thalmann, D. (2000). Efficient muscle shape deformation. In IFIP, pages 132-142.
  7. Audenaert, A. and Audenaert, E. (2008). Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling. Computer Methods and Programs in Biomedicine, 92(1):8-19.
  8. Audenaert, A. and Audenaert, E. (2008). Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling. Computer Methods and Programs in Biomedicine, 92(1):8-19.
  9. Blanco, F. R. and Oliveira, M. M. (2008). Instant mesh deformation. Proceedings of the 2008 symposium on Interactive 3D graphics and games SI3D 08, 1(212):71- 78.
  10. Blanco, F. R. and Oliveira, M. M. (2008). Instant mesh deformation. Proceedings of the 2008 symposium on Interactive 3D graphics and games SI3D 08, 1(212):71- 78.
  11. Blemker, S. S. and Delp, S. L. (2005). Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering, 33(5):661-673.
  12. Blemker, S. S. and Delp, S. L. (2005). Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering, 33(5):661-673.
  13. Botsch, M. and Kobbelt, L. (2003). Multiresolution surface representation based on displacement volumes. Computer Graphics Forum, 22(3):483-491.
  14. Botsch, M. and Kobbelt, L. (2003). Multiresolution surface representation based on displacement volumes. Computer Graphics Forum, 22(3):483-491.
  15. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. (2001). Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7801, pages 31-36, New York, NY, USA. ACM.
  16. Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H. (2001). Dynamic real-time deformations using space & time adaptive sampling. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH 7801, pages 31-36, New York, NY, USA. ACM.
  17. Delp, S. L. and Loan, J. P. (2000). A computational framework for simulating and analyzing human and animal movement. Computing in Science and Engineering, 2(5):46-55.
  18. Delp, S. L. and Loan, J. P. (2000). A computational framework for simulating and analyzing human and animal movement. Computing in Science and Engineering, 2(5):46-55.
  19. Erdemir, A., McLean, S., Herzog, W., and Van Den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22(2):131-154.
  20. Erdemir, A., McLean, S., Herzog, W., and Van Den Bogert, A. J. (2007). Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22(2):131-154.
  21. Favre, P., Gerber, C., and Snedeker, J. G. (2010). Automated muscle wrapping using finite element contact detection. Journal of Biomechanics, 43(10):1931- 1940.
  22. Favre, P., Gerber, C., and Snedeker, J. G. (2010). Automated muscle wrapping using finite element contact detection. Journal of Biomechanics, 43(10):1931- 1940.
  23. Gao, F., Damsgaard, M., Rasmussen, J., and Christensen, S. T. (2002). Computational method for muscle-path representation in musculoskeletal models. Biological Cybernetics, 87(3):199-210.
  24. Gao, F., Damsgaard, M., Rasmussen, J., and Christensen, S. T. (2002). Computational method for muscle-path representation in musculoskeletal models. Biological Cybernetics, 87(3):199-210.
  25. Garner, B. and Pandy, M. (2000). The obstacle-set method for representing muscle paths in musculoskeletal models. Computer Methods in Biomechanics and Biomedical Engineering, 3(1):1-30.
  26. Garner, B. and Pandy, M. (2000). The obstacle-set method for representing muscle paths in musculoskeletal models. Computer Methods in Biomechanics and Biomedical Engineering, 3(1):1-30.
  27. Gatlin, K. S. and Isensee, P. (2010). Reap the benefits of multithreading without all the work. http://msdn.microsoft.com/enus/magazine/cc163717.aspx.
  28. Gatlin, K. S. and Isensee, P. (2010). Reap the benefits of multithreading without all the work. http://msdn.microsoft.com/enus/magazine/cc163717.aspx.
  29. Hoppe, H. (1999). New quadric metric for simplifying meshes with appearance attributes. Proc IEEE Conference on Visualization VIS99, pages 59-66.
  30. Hoppe, H. (1999). New quadric metric for simplifying meshes with appearance attributes. Proc IEEE Conference on Visualization VIS99, pages 59-66.
  31. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. (2006). Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 25(3):1126-1134.
  32. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. (2006). Subspace gradient domain mesh deformation. ACM Transactions on Graphics, 25(3):1126-1134.
  33. Jensen, R. and Davy, D. (1975). An investigation of muscle lines of action about the hip: A centroid line approach vs the straight line approach. Journal of Biomechanics, 8(2):103-110.
  34. Jensen, R. and Davy, D. (1975). An investigation of muscle lines of action about the hip: A centroid line approach vs the straight line approach. Journal of Biomechanics, 8(2):103-110.
  35. Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 24(3):561-566.
  36. Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed triangular meshes. ACM Transactions on Graphics, 24(3):561-566.
  37. Kohout, J., Clapworthy, G. J., Martelli, S., Wei, H., Viceconti, M., and Agrawal, A. (2011). Fast muscle wrapping. Computers & Graphics. Submitted for publication.
  38. Kohout, J., Clapworthy, G. J., Martelli, S., Wei, H., Viceconti, M., and Agrawal, A. (2011). Fast muscle wrapping. Computers & Graphics. Submitted for publication.
  39. Li, S. Z. (1994). Markov random field models in computer vision. In Eklundh, J.-O., editor, ECCV (2), volume 801 of Lecture Notes in Computer Science, pages 361-370. Springer.
  40. Li, S. Z. (1994). Markov random field models in computer vision. In Eklundh, J.-O., editor, ECCV (2), volume 801 of Lecture Notes in Computer Science, pages 361-370. Springer.
  41. Marsden, S. P. and Swailes, D. C. (2008). A novel approach to the prediction of musculotendon paths. Proceedings of the Institution of Mechanical Engineers Part H Journal of engineering in medicine, 222(1):51-61.
  42. Marsden, S. P. and Swailes, D. C. (2008). A novel approach to the prediction of musculotendon paths. Proceedings of the Institution of Mechanical Engineers Part H Journal of engineering in medicine, 222(1):51-61.
  43. Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. (2006). Laplacian mesh optimization. In Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, GRAPHITE 7806, pages 381-389, New York, NY, USA. ACM.
  44. Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. (2006). Laplacian mesh optimization. In Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia, GRAPHITE 7806, pages 381-389, New York, NY, USA. ACM.
  45. nVidia (2011). Cuda zone. http://developer.nvidia.com/ca tegory/zone/cuda-zone.
  46. nVidia (2011). Cuda zone. http://developer.nvidia.com/ca tegory/zone/cuda-zone.
  47. OpenSim (2010). Opensim project, https://simtk.org/home /opensim.
  48. OpenSim (2010). Opensim project, https://simtk.org/home /opensim.
  49. Rohmer, D., Hahmann, S., and Cani, M.-P. (2008). Local volume preservation for skinned characters. Computer, 27(7):1919-1927.
  50. Rohmer, D., Hahmann, S., and Cani, M.-P. (2008). Local volume preservation for skinned characters. Computer, 27(7):1919-1927.
  51. Schroeder, W., Martin, K., and Lorensen, B. (2004). The Visualization Toolkit, Third Edition. Kitware Inc.
  52. Schroeder, W., Martin, K., and Lorensen, B. (2004). The Visualization Toolkit, Third Edition. Kitware Inc.
  53. Testi, D., Quadrani, P., and Viceconti, M. (2010). Physiomespace: digital library service for biomedical data. Philos Transact A Math Phys Eng Sci, 368(1921):2853-2861.
  54. Testi, D., Quadrani, P., and Viceconti, M. (2010). Physiomespace: digital library service for biomedical data. Philos Transact A Math Phys Eng Sci, 368(1921):2853-2861.
  55. van der Helm, F. and Veenbaas, R. (1991). Modelling the mechanical effect of muscles with large attachment sites: Application to the shoulder mechanism. Journal of Biomechanics, 24(12):1151-1163.
  56. van der Helm, F. and Veenbaas, R. (1991). Modelling the mechanical effect of muscles with large attachment sites: Application to the shoulder mechanism. Journal of Biomechanics, 24(12):1151-1163.
  57. Viceconti, M., Astolfi, L., Leardini, A., Imboden, S., Petrone, M., Quadrani, P., Taddei, F., Testi, D., and Zannoni, C. (2004). The multimod application framework. Information Visualisation, International Conference on, 0:15-20.
  58. Viceconti, M., Astolfi, L., Leardini, A., Imboden, S., Petrone, M., Quadrani, P., Taddei, F., Testi, D., and Zannoni, C. (2004). The multimod application framework. Information Visualisation, International Conference on, 0:15-20.
  59. Von Funck, W., Theisel, H., and Seidel, H. P. (2008). Volume-preserving mesh skinning. In Vision Modeling and Visualization, pages 409-414. IOS Press.
  60. Von Funck, W., Theisel, H., and Seidel, H. P. (2008). Volume-preserving mesh skinning. In Vision Modeling and Visualization, pages 409-414. IOS Press.
  61. VPHOP (2010). the osteoporotic virtual physiological human, http://vphop.eu.
  62. VPHOP (2010). the osteoporotic virtual physiological human, http://vphop.eu.
  63. Xu, W.-W. and Zhou, K. (2009). Gradient domain mesh deformation a survey. Journal of Computer Science and Technology, 24(1):6-18.
  64. Xu, W.-W. and Zhou, K. (2009). Gradient domain mesh deformation a survey. Journal of Computer Science and Technology, 24(1):6-18.
  65. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. (2005). Large mesh deformation using the volumetric graph laplacian. ACM SIGGRAPH 2005 Papers on SIGGRAPH 05, 1(212):496.
  66. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. (2005). Large mesh deformation using the volumetric graph laplacian. ACM SIGGRAPH 2005 Papers on SIGGRAPH 05, 1(212):496.
Download


Paper Citation


in Harvard Style

Kohout J., Kellnhofer P. and Martelli S. (2012). FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 16-25. DOI: 10.5220/0003811100160025


in Harvard Style

Kohout J., Kellnhofer P. and Martelli S. (2012). FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012) ISBN 978-989-8565-02-0, pages 16-25. DOI: 10.5220/0003811100160025


in Bibtex Style

@conference{grapp12,
author={Josef Kohout and Petr Kellnhofer and Saulo Martelli},
title={FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)},
year={2012},
pages={16-25},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003811100160025},
isbn={978-989-8565-02-0},
}


in Bibtex Style

@conference{grapp12,
author={Josef Kohout and Petr Kellnhofer and Saulo Martelli},
title={FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)},
year={2012},
pages={16-25},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003811100160025},
isbn={978-989-8565-02-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)
TI - FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM
SN - 978-989-8565-02-0
AU - Kohout J.
AU - Kellnhofer P.
AU - Martelli S.
PY - 2012
SP - 16
EP - 25
DO - 10.5220/0003811100160025


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2012)
TI - FAST DEFORMATION FOR MODELLING OF MUSCULOSKELETAL SYSTEM
SN - 978-989-8565-02-0
AU - Kohout J.
AU - Kellnhofer P.
AU - Martelli S.
PY - 2012
SP - 16
EP - 25
DO - 10.5220/0003811100160025