MONOCULAR DEPTH-BASED BACKGROUND ESTIMATION
Diego Cheda, Daniel Ponsa, Antonio M. López
2012
Abstract
In this paper, we address the problem of reconstructing the background of a scene from a video sequence with occluding objects. The images are taken by hand-held cameras. Our method composes the background by selecting the appropriate pixels from previously aligned input images. To do that, we minimize a cost function that penalizes the deviations from the following assumptions: background represents objects whose distance to the camera is maximal, and background objects are stationary. Distance information is roughly obtained by a supervised learning approach that allows us to distinguish between close and distant image regions. Moving foreground objects are filtered out by using stationariness and motion boundary constancy measurements. The cost function is minimized by a graph cuts method. We demonstrate the applicability of our approach to recover an occlusion-free background in a set of sequences.
References
- Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., and Cohen, M. (2004). Interactive Digital Photomontage. ACM Trans. Graph., 23:294-302.
- Black, M. J. and Fleet, D. J. (2000). Probabilistic detection and tracking of motion boundaries. Int. J. Comput. Vision, 38:231-245.
- Boykov, Y., Veksler, O., and Zabih, R. (2001). Efficient approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 20(12):1222-1239.
- Chen, X., Shen, Y., and Yang, Y. H. (2010). Background Estimation using Graph Cuts and Inpainting. In Proc. of Graphics Interface Conf., pages 97-103.
- Cohen, S. (2005). Background Estimation as a Labeling Problem. In IEEE Int. Conf. Comput. Vision, pages 1034-1041.
- Delong, A., Osokin, A., Isack, H., and Boykov, Y. (2011). Fast Approximate Energy Minimization with Label Costs. Int. J. Comput. Vision, pages 1-27.
- Goldstein, B. (2010). Sensation and Perception. Wadsworth Cengage Learning, Belmont, California, USA.
- Granados, M., Seidel, H.-P., and Lensch, H. P. A. (2008). Background Estimation from Non-Time Sequence Images. In Proc. of Graphics Interface Conf., pages 33-40.
- Harville, M., Gordon, G., and Woodfill, J. (2001). Adaptive Video Background Modeling using Color and Depth. In Int. Conf. Image Process., volume 3, pages 90-93.
- Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. (2003). Graphcut Textures: Image and Video Synthesis using Graph Cuts. ACM Trans. Graph., 22:277- 286.
- Nedovic, V., Smeulders, A., Redert, A., and Geusebroek, J. M. (2010). Stages As Models of Scene Geometry. IEEE Trans. Pattern Anal. Mach. Intell., 32(9):1673- 1687.
- Radke, R., Andra, S., Al-Kofahi, O., and Roysam, B. (2005). Image Change Detection Algorithms: A Systematic Survey. IEEE Trans. Image Process., 14(3):294-307.
- Saxena, A., Sun, M., and Ng, A. (2009). Make3D: Learning 3D Scene Structure from a Single Still Image. IEEE Trans. Pattern Anal. Mach. Intell., 31(5):824 -840.
Paper Citation
in Harvard Style
Cheda D., Ponsa D. and M. López A. (2012). MONOCULAR DEPTH-BASED BACKGROUND ESTIMATION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 323-328. DOI: 10.5220/0003816503230328
in Bibtex Style
@conference{visapp12,
author={Diego Cheda and Daniel Ponsa and Antonio M. López},
title={MONOCULAR DEPTH-BASED BACKGROUND ESTIMATION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={323-328},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003816503230328},
isbn={978-989-8565-03-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - MONOCULAR DEPTH-BASED BACKGROUND ESTIMATION
SN - 978-989-8565-03-7
AU - Cheda D.
AU - Ponsa D.
AU - M. López A.
PY - 2012
SP - 323
EP - 328
DO - 10.5220/0003816503230328