STEREO VISION-BASED 3D CAMERA POSE AND OBJECT STRUCTURE ESTIMATION - An Application to Service Robotics

Sorin M. Grigorescu, Tiberiu T. Cociaș, Gigel Maceșanu, Florin Moldoveanu

2012

Abstract

In this paper, a robotic pose (position and orientation) estimation and volumetric object modeling system is proposed. The main goal of the methods is to reliably detect the structure of objects of interest present in a visualized robotic scene, together with a precise estimation of the robot’s pose with respect to the detected objects. The robustness of the robotic pose estimation module is achieved by filtering the 2D correspondence matches in order to detect false positives. Once the pose of the robot is obtained, the volumetric structure of the imaged objects of interest is reconstructed through 3D shape primitives and a 3D Region of Interest (ROI).

References

  1. Brown, M., Burschka, D., and Hager, G. (2003). Advances in Computational Stereo. IEEE Trans. on Pattern Recognition and Machine Intelligence, 25(8):993- 1008.
  2. Davies, R., Twining, C., and Taylor, C. (2008). Statistical Models of Shape: Optimisation and Evaluation. Springer.
  3. Geiger, A., Ziegler, J., and Stiller, C. (2011). StereoScan: Dense 3D Reconstruction in Real-time. In IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany.
  4. Grigorescu, S. and Moldoveanu, F. (2011). Controlling Depth Estimation for Robust Robotic Perception. In Proc. of the 18th IFAC World Congress, Milano, Italy.
  5. Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press.
  6. Hussmann, S. and Liepert, T. (2007). Robot Vision System based on a 3D-TOF Camera. In Instrumentation and Measurement Technology Conference-IMTC 2007, Warsaw, Poland.
  7. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., and Comaniciu, D. (2008). Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features. IEEE Trans. on Medical Imaging, 27(11):1668-1681.
Download


Paper Citation


in Harvard Style

M. Grigorescu S., T. Cociaș T., Maceșanu G. and Moldoveanu F. (2012). STEREO VISION-BASED 3D CAMERA POSE AND OBJECT STRUCTURE ESTIMATION - An Application to Service Robotics . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-04-4, pages 355-358. DOI: 10.5220/0003819403550358


in Bibtex Style

@conference{visapp12,
author={Sorin M. Grigorescu and Tiberiu T. Cociaș and Gigel Maceșanu and Florin Moldoveanu},
title={STEREO VISION-BASED 3D CAMERA POSE AND OBJECT STRUCTURE ESTIMATION - An Application to Service Robotics},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={355-358},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003819403550358},
isbn={978-989-8565-04-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2012)
TI - STEREO VISION-BASED 3D CAMERA POSE AND OBJECT STRUCTURE ESTIMATION - An Application to Service Robotics
SN - 978-989-8565-04-4
AU - M. Grigorescu S.
AU - T. Cociaș T.
AU - Maceșanu G.
AU - Moldoveanu F.
PY - 2012
SP - 355
EP - 358
DO - 10.5220/0003819403550358