EXTRACTION OF REGION BOUNDARY PATTERNS WITH ACTIVE CONTOURS
Mohamed Ben Salah, Amar Mitiche
2012
Abstract
In this study we address the problem of recovering region boundary patterns consistent with a given pattern. A level set method formulated in the variational framework evolves an active contour towards regions of interest boundaries while omitting the others. The curve evolution results from the minimization of a functional which measures the similarity between the distribution of an image-based geometric feature on the curve and a model distribution. The corresponding curve evolution equation can be viewed as a geodesic active contour flow having a variable stopping function. This affords a global representation of the objects boundaries which can effectively drive active curve segmentation in a variety of otherwise adverse conditions. We ran several experiments supported by quantitative performance evaluations using various examples of segmentation and tracking.
References
- Ben Ayed, I., Li, S., and Ross, I. (2009). A statistical overlap prior for variational image segmentation. International Journal of Computer Vision, 85(1):115-132.
- Ben Ayed, I., Mitiche, A., Salah, M. B., and Li, S. (2010). Finding image distributions on active curves. In CVPR, pages 3225-3232.
- Berg, A., Berg, T., and Malik, J. (2005). Shape matching and object recognition using low distortion correspondance. In CVPR.
- Boykov, Y. and Funka Lea, G. (2006). Graph cuts and efficient N-D image segmentation. International Journal of Computer Vision, 70(2):109-131.
- Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1):61-79.
- Chan, T. and Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277.
- Chan, T. and Zhu, W. (2005). Level set based shape prior segmentation. In Computer Vision and Pattern Recognition, volume 2, pages 1164-1170.
- Cremers, D., Osher, S., and Soatto, S. (2006). Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision, 69(3):335-351.
- Cremers, D., Rousson, M., and Deriche, R. (2007). A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape. International Journal of Computer Vision, 72(2):195- 215.
- Cremers, D., Sochen, N., and Schnorr, C. (2003). Towards recognition-based variational segmentation using shape priors and dynamic labeling. In International Conference on Scale Space Theories in Computer Vision, volume 2695, pages 388-400.
- Do Carmo, M. P. (1976). Differential Geometry of Curves and Surfaces. Prentice Hall.
- Ferrari, V., Jurie, F., and Schmid, C. (2009). From images to shape models for object detection. International Journal of Computer Vision.
- Ferrari, V., Tuytelaars, T., and Gool, L. V. (2006). Object detection by contour segment networks. In European Conference on Computer Vision (ECCV),.
- Foulonneau, A., Charbonnier, P., and Heitz, F. (2006). Affine-invariant geometric shape priors for regionbased active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1352-1357.
- Foulonneau, A., Charbonnier, P., and Heitz, F. (2009). Multi-reference shape priors for active contours. International Journal of Computer Vision, 81(1):68-81.
- Freedman, D. and Zhang, T. (2004). Active contours for tracking distributions. IEEE Transactions on Image Processing, 13(4):518-526.
- Holtzman-Gazit, M., Kimmel, R., Peled, N., and Goldsher, D. (2006). Segmentation of thin structures in volumetric medical images. IEEE Transacions on Image Processing, 15(2):354-363.
- Kass, M., Witkin, A. P., and Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4):321-331.
- Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A., and Yezzi, A. J. (1995). Gradient flows and geometric active contour models. In ICCV, pages 810-815.
- Lecellier, F., Jehan-Besson, S., Fadili, J., Aubert, G., and Revenu, M. (2009). Optimization of divergences within the exponential family for image segmentation. In SSVM, pages 137-149.
- Leventon, M. E., Grimson, W. E., and Faugeras, O. (2000). Statistical shape influence in geodesic active contours. In Conference on Computer Vision and Pattern Recognition, volume 1, pages 316-323.
- Li, C., Xu, C., Gui, C., and Fox, M. D. (2005). Level set evolution without re-initialization: A new variational formulation. In Computer Vision and Pattern Recognition.
- Mansouri, A. and Mitiche, A. (2002). Region tracking via local statistics and level set pdes. In IEEE International Conference on Image Processing, volume III, pages 605-608, Rochester, NY, USA.
- Mansouri, A., Mitiche, A., and Vazquez, C. (2006). Multiregion competition: A level set extension of region competition to multiple region partioning. Computer Vision and Image Understanding, 101(3):137-150.
- Martin, D., Fowlkes, C., and Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):530-549.
- Michailovich, O. V., Rathi, Y., and Tannenbaum, A. (2007). Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Transactions on Image Processing, 16(11):2787-2801.
- Mitiche, A. and Ayed, I. B. (2010). Variational and Level Set Methods in Image Segmentation. Springer, 1st edition.
- Mortensen, F. N. (2008). Progress in Autonomous Robot Research. Nova Science Publishers.
- Myronenko, A. and Song, X. B. (2009). Global active contour-based image segmentation via probability alignment. In CVPR, pages 2798-2804.
- Paragios, N. and Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3):223-247.
- Paragios, N., Mellina-Gottardo, O., and Ramesh, V. (2004). Gradient vector flow fast geometric active contours. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 26(3):402-407.
- Paragios, N., Rousson, M., and Ramesh, V. (2002). Matching distance functions: A shape to area variational approach for global to local registration. In European Conference in Computer Vision (ECCV), pages 775- 790.
- Rousson, M. and Cremers, D. (2005). Efficient kernel density estimation of shape and intensity priors for level set segmentation. In MICCAI, pages 757-764.
- Salah, M. B., Mitiche, A., and Ayed, I. B. (2010). Effective level set image segmentation with a kernel induced data term. IEEE Transactions on Image Processing, 19(1):220-232.
- Samson, C., Blanc-Feraud, L., Aubert, G., and Zerubia, J. (2000). A level set model for image classification. International Journal of Computer Vision, 40(3):187- 197.
- Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods. Cambridge University Press.
- Vazquez, C., Mitiche, A., and Laganiere, R. (2006). Joint segmentation and parametric estimation of image motion by curve evolution and level sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5):782-793.
- Zhu, S. C. (2003). Statistical modeling and conceptualization of visual patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):691-712.
- Zhu, S. C. and Yuille, A. (1996). Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 118(9):884-900.
Paper Citation
in Harvard Style
Ben Salah M. and Mitiche A. (2012). EXTRACTION OF REGION BOUNDARY PATTERNS WITH ACTIVE CONTOURS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012) ISBN 978-989-8565-03-7, pages 240-248. DOI: 10.5220/0003826102400248
in Bibtex Style
@conference{visapp12,
author={Mohamed Ben Salah and Amar Mitiche},
title={EXTRACTION OF REGION BOUNDARY PATTERNS WITH ACTIVE CONTOURS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)},
year={2012},
pages={240-248},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003826102400248},
isbn={978-989-8565-03-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2012)
TI - EXTRACTION OF REGION BOUNDARY PATTERNS WITH ACTIVE CONTOURS
SN - 978-989-8565-03-7
AU - Ben Salah M.
AU - Mitiche A.
PY - 2012
SP - 240
EP - 248
DO - 10.5220/0003826102400248