THE SQUARE-ROOT UNSCENTED INFORMATION FILTER FOR STATE ESTIMATION AND SENSOR FUSION

Guoliang Liu, Florentin Wörgötter, Irene Markelić

2012

Abstract

This paper presents a new recursive Bayesian estimation method, which is the square-root unscented information filter (SRUIF). The unscented information filter (UIF) has been introduced recently for nonlinear system estimation and sensor fusion. In the UIF framework, a number of sigma points are sampled from the probability distribution of the prior state by the unscented transform and then propagated through the nonlinear dynamic function and measurement function. The new state is estimated from the propagated sigma points. In this way, the UIF can achieve higher estimation accuracies and faster convergence rates than the extended information filter (EIF). As the extension of the original UIF, we propose to use the square-root of the covariance in the SRUIF instead of the full covariance in the UIF for estimation. The new SRUIF has better numerical properties than the original UIF, e.g., improved numerical accuracy, double order precision and preservation of symmetry.

References

  1. Anderson, B. D. O. and Moore, J. B. (1979). Optimal Filtering. Eaglewood Cliffs, NJ: Prentice-Hall.
  2. Arasaratnam, I. and Haykin, S. (2009). Cubature kalman filters. Automatic Control, IEEE Transactions on, 54(6):1254 -1269.
  3. Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation. Wiley Interscience.
  4. Casbeer, D. and Beard, R. (2009). Distributed information filtering using consensus filters. In American Control Conference, 2009. ACC 7809., pages 1882 -1887.
  5. Hartikainen, J. and Särkkä, S. (2008). Optimal filtering with kalman filters and smoothers a manual for matlab toolbox ekf/ukf.
  6. Kim, Y., Lee, J., Do, H., Kim, B., Tanikawa, T., Ohba, K., Lee, G., and Yun, S. (2008). Unscented information filtering method for reducing multiple sensor registration error. In Multisensor Fusion and Integration for Intelligent Systems, IEEE International Conference on, pages 326 -331.
  7. Lee, D.-J. (2008). Nonlinear estimation and multiple sensor fusion using unscented information filtering. Signal Processing Letters, IEEE, 15:861 -864.
  8. Liu, G., W örgötter, F., and Markelic, I. (2011). Nonlinear estimation using central difference information filter. In IEEE Workshop on Statistical Signal Processing, pages 593-596.
  9. Potter, J. and Stern., R. (1963). Statistical filtering of space navigation measurements. In In AIAA Guidance Contr. Conference.
  10. Sadhu, S., Srinivasan, M., Mondal, S., and Ghoshal, T. (2004). Bearing only tracking using square root sigma point kalman filter. In India Annual Conference, 2004. Proceedings of the IEEE INDICON 2004. First, pages 66 - 69.
  11. Van der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering, Oregon Health & Science University,.
  12. Van der Merwe, R. and Wan, E. (2001). The squareroot unscented kalman filter for state and parameterestimation. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP 7801). 2001 IEEE International Conference on, volume 6, pages 3461 - 3464 vol.6.
  13. Wang, L., Zhang, Q., Zhu, H., and Shen, L. (2010). Adaptive consensus fusion estimation for msn with communication delays and switching network topologies. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 2087 -2092.
Download


Paper Citation


in Harvard Style

Liu G., Wörgötter F. and Markelić I. (2012). THE SQUARE-ROOT UNSCENTED INFORMATION FILTER FOR STATE ESTIMATION AND SENSOR FUSION . In Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-8565-01-3, pages 169-173. DOI: 10.5220/0003839101690173


in Bibtex Style

@conference{sensornets12,
author={Guoliang Liu and Florentin Wörgötter and Irene Markelić},
title={THE SQUARE-ROOT UNSCENTED INFORMATION FILTER FOR STATE ESTIMATION AND SENSOR FUSION},
booktitle={Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2012},
pages={169-173},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003839101690173},
isbn={978-989-8565-01-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - THE SQUARE-ROOT UNSCENTED INFORMATION FILTER FOR STATE ESTIMATION AND SENSOR FUSION
SN - 978-989-8565-01-3
AU - Liu G.
AU - Wörgötter F.
AU - Markelić I.
PY - 2012
SP - 169
EP - 173
DO - 10.5220/0003839101690173